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Preliminary Results

Many applications of modern statistics involve a large number of measurements and can be considered
in a linear algebra framework. In many of these problems, the dimensionality p exceeds the number of
observations, N = n + 1; e.g. DNA Microarray data, portfolio selection in economics, network problems
in computer science. Classical multivariate inference techniques become degenerate when p > n and
many perform poorly when p is of the same order as n. My early results concentrated on inference of
the covariance matrix in large-dimensional situations. This methodology was extended into time series
goodness-of-fit testing and has lead to my current research.

High-dimensional Multivariate Analysis

Consider a random sample of p-dimensional independent observations, typically from a multivariate normal
distributionNp(µ,Σ), where both parameters are unknown. For hypothesis testing on Σ, typically a statistic
based on the likelihood ratio criterion (LRT) would be used. However, when p > n, the LRT is not available,
and when p is close to the size of n, the LRT is ill-conditioned since the smallest eigenvalues of the sample
covariance matrix will tend towards zero. Statistics were developed for the sphericity hypothesis, Σ = σ2I ,
where σ2 is an unknown scalar proportion in Fisher et al. (2010), and the identity hypothesis, Σ = I , in
Fisher (2012). The statistics are based on parametric functions of the first four arithmetic means of the
eigenvalues of Σ; i.e. ai = (1/p)

∑
λij . The theoretical results in Fisher et al. (2010) and Fisher (2012)

show estimators for the first four arithmetic means are asymptotically normally distributed as (n, p) → ∞,
under the assumptions that the data is normal and p/n→ c, known as a concentration.

In Fisher and Sun (2011), the estimators for the first four arithmetic means were utilized in the application
of estimating the covariance matrix. In particular, a new set of estimators were introduced for the optimal
intensity of a Stein-type shrinkage estimator (see Stein (1956), Ledoit and Wolf (2003)): S∗ = λF + (1 −
λ)S, where S is the sample covariance matrix, F is a well-conditioned target matrix and λ ∈ [0, 1] is known
as the shrinkage intensity. When n is large compared to p, λ→ 0, and as p increases to (or exceeds) n, more
weight is put on the target matrix. An optimal intensity with respect to the squared loss function based on the
Frobenius norm can be found and we suggest (n, p)-consistent estimators based on the work of Srivastava
(2005) for three classic targets: the identity matrix, a diagonal with a common variance, and the diagonal
matrix consisting of the diagonal elements of the sample covariance matrix.

Time Series Diagnostic Testing

Many time series data are affected by serial-correlation. Empirical evidence in economics suggest some
series may suffer from changes in variability, a phenomenon known as heteroscedasticity. To model the
serial correlation structure of a time series we typically use a stationary and invertible ARMA(p, q) process
where p is the autoregressive order, q is the moving average order and the error (innovation) sequence is iid
with zero mean and finite variance. After a time series has been fit with some ARMA model the correlation
structure of the residual innovation sequence would be estimated by the sample autocorrelation function

r̂k =

∑n
k+1 ε̂tε̂t−k∑n

t=1 ε̂
2
t

for k = 1, 2, . . . ,m. (1)

Here {ε̂t} are the observed residuals after fitting an ARMA(p, q) model. If the fitted model is adequate,
each of {r̂k} should be approximately equal to zero where m is chosen large enough to detect meaningful
correlation in the data. However, if the fit underestimates the ARMA orders, the values of the autocorre-
lations should significantly deviate from zero. A diagnostic test for the adequacy of a fitted ARMA model
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was introduced by Box and Pierce (1970) where they derive the asymptotic joint-distribution of the sample
autocorrelations. Ljung and Box (1978) improve on the finite sample performance by standardizing the val-
ues and Monti (1994) proposed a test utilizing the standardized residual partial autocorrelations. All three
statistics are asymptotically distributed as a chi square random variable withm−(p+q) degrees of freedom
when an ARMA(p, q) was fit to the data and have the same general form

Q̃ = n
m∑
k=1

n+ 2

n− k
r̂2k, (2)

where Q̃ is the widely used Ljung and Box (1978) statistic. Simulations in Monti (1994) demonstrate her
statistic is more powerful than Q̃ when the fitted model underestimates the order of the moving average
component. Practitioners of statistics typically use the statistic Q̃.

Recently, Peña and Rodrı́guez (2002, 2006) and Mahdi and McLeod (2012) proposed statistics based on the
likelihood ratio criterion (i.e. determinant) on the estimated Toeplitz matrix of the autocorrelation function:

R̂m =


1 r̂1 · · · r̂m
r̂1 1 · · · r̂m−1
... · · · . . .

...
r̂m · · · r̂1 1

 . (3)

Under the null hypothesis that the model has been correctly identified, the matrix R̂m is close to the identity
matrix. Simulation experiments demonstrate these tests can improve over the traditionally used Ljung Box
statistic in terms of power. However, there are computational concerns when the matrix R̂m is constructed
using standardized autocorrelations. Furthermore, as m-increases, the behavior of R̂m is similar to that in
high-dimensional multivariate analysis and the statistics become unstable.

Using the methodology from Srivastava (2005) and my work in high-dimensional analysis, a statistic is
constructed for testing the adequacy of a fitted ARMA process based on the trace of the square of R̂m:

Q̃W = n(n+ 2)

m∑
k=1

(m− k + 1)

m

r̂2k
n− k

. (4)

The statistic Q̃W can be interpreted as a weighted Ljung-Box test. The residual at lag one is given the most
weight, 1, while the residual at lag m is given the least weight, 1/m. The statistic is easy to implement
and is computationally stable. A similar derivation using the matrix of partial autocorrelations leads to a
weighted Monti statistic.

The proposed weighted portmanteau statistics are quite versatile and can be modified to detect the presence
of a nonlinear or heteroscedastic innovation sequence, such as the Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) or Stochastic Volatility (SV) models. Simulation experiments in Fisher and
Gallagher (2012) show the weighting structure improves over the other methods available in the literature.
The versatility of the method is demonstrated further as it can be used to detect nonlinear processes (i.e.
McLeod and Li (1983)) and for a fitted GARCH process (i.e. Li and Mak (1994)).

Current and Future Work

My current and future work revolves around extending the time series goodness-of-fit test for other areas of
time series and different testing procedures.
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General Weighting Schemes

The results of Fisher and Gallagher (2012) suggest that decreasing weighted combinations of the autocor-
relation function may be less sensitive to the choice of m. In practice, the lag at which the statistics are
calculated will generally increase with the sample size. This motivates collaborator Colin Gallagher and I
to consider the asymptotic behavior of general weighted portmanteau statistics:

Qn,m = n
m∑
k=1

wkr̂
2
k, (5)

where {wk} = {wk,m} is a sequence of positive real numbers. Three results can be proven: (1) For fixedm,
as n→∞, the general weighted Portmanteau statistic has an asymptotic distribution that can be represented
as a weighted sum of independent chi square random variables each with one degree of freedom; (2) If m
depends on n and the sum of the weights is divergent, then the test statistic can be normalized to be Op(1),
the normalized test statistic has an asymptotic normal distribution; (3) ifm diverges with the sample size and
the weights are summable, then the statistic does not require normalization and the asymptotic distribution
has weak limit which results from taking the limit as m→∞ of the fixed m asymptotic distribution.

We introduce two potential weighting schemes satisfying Theorem (3) and study their behavior through
simulation. The correlation function of an ARMA process is summable in the lag and can be bounded
by a constant multiple of a sequence which decreases geometrically in the lag. In other words the large lag
correlations decay very quickly to zero. It seems intuitive that the weights in (5) be selected to decay quickly
as well, since under the alternative hypothesis of an under fit model the correlations far from lag zero should
still be relatively small. Based on this line of thought, we consider weights of the formwk = (p+q)ak−1, for
some 0 < a < 1. The constant multiplier p+ q is included to ensure that the second moment approximation
is positive. The geometric decaying weights effectively truncate the statistic at some lag. For instance, with
a ratio of a = 0.9 and p + q = 1 the weight at lag 31 is approximately 0.04. All squared autocorrelations
beyond lag 31 are essentially not included in the statistic. Our simulation studies show this appears to
stabilize the statistic as its empirical size and power appear constant as the lag increases. The geometric
decaying scheme does pose a problem with no clear solution: How does one select the ratio a? The following
adaptive weighting scheme eliminates the need to pick a ratio and appears to be more powerful.

The data-driven weights can be better understood through an example: letXt = εt+θ5εt−5. The data follows
a seasonal moving-average of order 5 where the only correlation is at lag 5. The autocorrelation functions
should deviate from zero only at lags 5, 10, . . . In theory, we should put the most weight on those particular
squared autocorrelations. Using one of the open questions in the discussion in Fisher and Gallagher (2012)
we propose a combination of the autocorrelation function and the partial autocorrelations. Essentially use
a function of the partial autocorrelations as the weights. Consider taking a linear combination of the Ljung
Box statistic and a weighted statistic:

QW = n

m0∑
k=1

n+ 2

n− k
r̂2 + n

m∑
k=m0+1

wkr̂
2.

The first m0 terms get the standardizing weight (n+ 2)/(n− k) and the remaining m−m0 terms will get
absolutely summable weights. We suggest the later terms be given weights picked as a function of the partial
autocorrelation that converge to zero in probability. Utilizing this scheme, for any bounded m0, the weights
will be absolutely summable in probability but will extract more information from the data at higher lags
under the alternative hypothesis. Based on the work of Keenan (1997), we suggest m0 = min (log(n),M)
where M is a bounded constant and wk = −log(1− |πk|).
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Initial simulation results suggest the proposed adaptive weighting scheme based on the data appears to
dominate the competition. The proposed weighting schemes have almost constant empirical size and power
as the lag increases for fixed n. These simulations have motived us to consider other cases and developing
an adaptive techniques for detecting nonlinear processes. We expect to submit this result in Spring 2013.

Multivariate Time Series

A natural extension for a weighted statistic will be in the modeling of multivariate time series. The Vector
ARMA (VARMA) process of a k-dimensional time series Xt = (X1t, X2t, . . . , Xkt)

′ is the natural analog
of the univariate ARMA model into k-dimensions. After fitting such a process, one much check for the
adequacy of the fitted model. The portmanteau statistics of Box and Pierce (1970) and Ljung and Box
(1978) were extended to the multivariate setting by Chitturi (1974), Hosking (1980, 1981b) and Li and
McLeod (1981). Hosking (1981a) noted that these statistics are equivalent. Each of these statistics are
asymptotically distributed as chi square random variables with k2(m − p − q) degrees of freedom when p
autoregressive and q moving average matrix parameters are fit to the k-dimensional time series and tested
at lag m. Recently, Mahdi and McLeod (2012) generalized the statistics from Peña and Rodrı́guez (2002,
2006) for fitted VARMA.

Along with collaborator Michael Robbins, I am currently working on this topic and have preliminary results
extending the methodology from Fisher and Gallagher (2012) for multivariate time series. Like that in Mahdi
and McLeod (2012), considering the Toeplitz matrix on the multivariate autocorrelation matrix where each
element is a matrix of the form R̂k defined in Hosking (1980). Using the methodology from Fisher and
Gallagher (2012) and properties of the trace operation, we have derived a statistic of the form

QW = n2
m∑
k=1

m− i+ 1

m
tr
(
R̂′kR̂k

)
/(n− k), (6)

where m is the number of lags being tested. This statistic is asymptotically distributed as a linear combi-
nation of k2m chi square random variables, each with one degree of freedom and the coefficients are the
eigenvalues of the covariance matrix of QW . We are currently exploring data-driven weighting schemes and
looking to apply this methodology to other multivariate time series models (detecting and fitting GARCH).

Infinite Variance Time Series

Due to empirical findings the importance of infinite variance models has increased significantly. It may
be the case that the innovation sequence comes from a heavy-tailed, extreme value, or infinite variance
distribution. Runde (1997) provided the distribution of the popular Box Pierce statistic for time series with
infinite variance based on those results. Lin and McLeod (2008) and Lee and Ng (2010) provide reviews of
the topic and propose some portmanteau statistics. The test in Lin and McLeod (2008) is the logical adaption
of the Peña and Rodrı́guez (2002) statistic into infinite variance time series. Lee and Ng (2010) suggest a
modification of the Ljung-Box statistic where the residuals are trimmed at a suitable threshold. Bouhaddioui
and Ghoudi (2012) develops a nonparametric test based on the rank of the correlations. Simulations show
the newly suggested methods improve over the traditionally used Ljung Box type test.

The results of Davis and Resnick (1986), Lin and McLeod (2008), Lee and Ng (2010) and Bouhaddioui
and Ghoudi (2012) can all be modified to utilize a weighting scheme as described above. I am currently
working with collaborators Yunwei Cui and Rongning Wu on diagnostic procedures for noncausal time
series (observation may depend on future innovation terms) with infinite variance, see Andrews et al. (2009)
for model description. The ideas will be extended to study nonlinear models with infinite variance; an
area relatively in its infancy as work began about 15-years ago. We are currently developing adaptive
methodology based on the above results.
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