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Abstract

Single-Index Models (SIMs) generalize regression. In this project
we perform a simulation study comparing SIMs to the linear regres-
sion technique. Results demonstrate the SIM as a viable alternative
to linear modeling techniques. We provide examples and discuss the
importance of estimating the unique projection vector in the SIM.
Potential methods to estimate the unique projection vector are dis-
cussed.
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1 Introduction

In many scientific investigations such as, econometric studies, dose response
models in biometrics, reliability studies, analysis of electrical signals, etc.
the ability to capture and model a signal (typically the mean function of a
response based on predictor variables) is essential. In many cases, a semi-
parametric method can be used as a compromise between too restrictive
parametric models and extremely flexible nonparametric models (Lin 2002).
In this project, we compare the typical linear modeling method to a semi-
parametric modeling method commonly called the Single-Index Model.

1.1 General Linear Modeling

The most common form of modeling a set of responses is that of linear
regression. Suppose a set of responses Y = (Y1, Y2, . . . , Yn)T are observed,
along with accompanying predictor variables Xi = (xi,1, xi,2, . . ., xi,k) for
each i = 1,. . ., n. The responses can be modeled in the form

Yi = β0 + β1xi1 + . . . + βkxik + εi; i = 1, . . . , n

which is typically written in the general form

Y = Xβ + ε

where X is the matrix of xij’s, i = 1,. . .,n; j = 1,. . .,k and ε = (ε1,ε2,. . .,εn)T ,
with E[ε] = 0. Upon making the observations Y1,Y2,. . .,Yn, if the distribution
of ε is known, likelihood methods can be used to estimate the vector of coef-
ficients β. If the distribution of ε is not known, but suitable assumptions on
the distribution can be made (i.e. mean zero, finite variance), the method of
least squares (LS) can be used efficiently for estimating the vector of coeffi-
cients β (Horowitz 1998). Much literature exists on the details of estimating
β. The details for estimation and testing for the β’s for linear models can be
found in Graybill (1976), and many other texts on linear models. If we were
to use ordinary LS method for the vector β, the estimator is given by

β̂ = X−Y = (XT X)−1XT Y.

One can then find a vector of predicted Y ’s given by

Ŷ = Xβ̂

and typically the error term’s variance, σ2, is estimated by

σ̂2 = Y T (I −XX−)Y/(n− k − 1).

Inference about the model and the error structure can be performed based
on the assumptions made on εi’s.
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1.2 Single-Index Modeling

The familiar parametric method described above, linear modeling, can be
quite restrictive since certain assumptions must be made (some knowledge
about the distribution of ε, linearity of the mean function in terms of the
coefficients β1, . . . , βk) for inference. When linearity of the model is not
readily known, a single-index model is a viable alternative. Single-index
models relax some of the model restrictions, such as linearity of the mean
function, are relatively easy as far as computing is concerned and maintain
many of the desirable features of linear model and least-squares methods
(Horowitz 1998). Given random variables (Y,X), we can define a function
g(x) = E[Y |X = x]. This is known as the mean function. Then, a general
model can be written as

Y = g(X) + ε (1)

and as before, ε is a mean zero random variable independent of X. We can
consider E[Y |X = x] as a projection of (X, Y ) onto a lower dimensional
space, typically R. Generally g : Rp → R, but a specific case that will be
studied in this project is g(x) = h(θT x) where θ ∈ Rp and h(·) is a smooth
univariate function. Therefore g(x) is constant on the contours θT x and as
shown in Lin (2002), the contour line θT x provides as much information as
X about g under this particular model. This is referred to as the single-
index model (SIM). Thus, hereafter we assume that each of our observations
(xi, Yi), where xi is p-dimensional, are generated from the model

Yi = h(θT xi) + εi; i = 1, . . . , n

where h is a smooth univariate function, θ is a p-vector with
∥∥θ

∥∥ = 1 and
θ1 > 0. These restrictions are needed for the function h to be identifiable
(Lin and Kulasekera 2006). Also ε1, . . . , εn are iid random variables with
mean zero and a finite variance. The parameter, θ, is called the indexand
can be thought of as a projection vector (from Rp to R). Upon making the
observations, the goal is to then estimate h(·) and θ based on our observations
(xi, Yi); i = 1, . . . , n. As defined, the single-index model is a particular case of
the general model (1) described above. When h is the identity, this becomes
a linear model.

1.3 Model Fitting

Upon making observations (xi, Yi), i = 1, . . . , n, a model fitting technique
will be applied in an attempt to capture the original signal, h(θT x), and find
an estimator for the variance of ε, our error term. If our function h is linear,
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a general linear model captures the mean function to a high degree and we
can estimate for the variance of ε using an appropriate sum of squares of
residuals.

1.3.1 Linear Modeling

Issues arise when our link function, g(x) is nonlinear (e.g. polynomial, sine,
cosine, exponential, logistic). We can approximate these non-linear functions
with a linear model by expanding g(·) in a Taylor series to include squares,
cubes, etc... of our individual covariates. As an example, suppose the link
function h is given by h(θT x) = (θT x)2 for p = 2 for our observations; x1, x2

with responses yi. We can fit a model that includes the square terms, along
with the crossproduct terms; x1,x2,x

2
1,x

2
2,x1x2 and get a perfect linear model

in all these terms, that will be an exact fit for h(θT x). Our new model then
has q = 5 covariates. Performing a regression would effectively capture the
quadratic signal. However, with the expansion of the number of covariates
q, in this simple example, the degrees of freedom for the unbiased estimator
of the variance becomes smaller, although we get a near perfect model.

Using a method identical to our first example, a general linear model
can be used for a trigonometric or an exponential mean function using a
Taylor series expansion. If our link function were h(θT x) = exp(θT x) for
instance, we could use the Taylor Series expansion idea to include squares,
cubes, etc. Following the first example, we could write an approximation of
this function into a new model, including the terms: x1,x2,x

2
1, x2

2, x1x2, etc.
This would be a better approximation for the actual model function than a
linear model β0 +β1x1 +β2x2. However, in this purely nonlinear case, we will
never be able to completely represent the highly nonlinear model function,
but the approximation becomes better with more and more terms. The
same degrees of freedom issue as the first example arises; as the number of
parameters increase, our variance estimator becomes unstable. Furthermore,
increasing the number of covariates can become computationally tedious and
a sense of precise modeling is lost.

1.3.2 Semiparametric Modeling

We can take a semiparametric approach to approximate purely nonlinear
models, such as trigonomic, exponential and logistic models by using a single-
index model to represent our observations. Due to its familarity and simplic-
ity to code on a computer, we use the projection pursuit regression (PPR)
method with one-step to estimate the corresponding vector θ. Let θ̂ be a
suitable estimate of θ. A kernel density estimator can be used to estimate
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our h using an appropriate kernel function and a bandwidth. A detailed
description for estimators of h is provided in the next chapter, giving their
properties. It should be noted that several methods are available for esti-
mating θ and h. In performing the simulations as part of this project, the
PPR method for estimating θ and kernel smoothing for estimating h were
chosen for convenience in computation. Although harder to estimate than a
linear model, the SIM eliminates some of the inference issues in estimating
the variance of our error term, ε.

1.4 Simulation Study

We provide details on approximating the SIM. First by exploring ways to
estimate the projection vector, θ, and then estimating the mean function,
h. We then conduct a simulation study comparing the performance of the
single-index model against the performance of linear modeling techniques.
In each case, the single-index model is compared to a sequence of linear
regression models by comparing the estimation of the variance of ε to the
known variance. The estimation of the signal for each method is compared to
the exact known signal, h(θT x). Akaike Information Criteria (AIC) (Akaike
1974), as well as the Scharz-Bayesian (hereafter referred to as Bayesian)
Information (BIC) (Schwarz 1978), are used for model selection, penalizing
linear modeling techniques for including too many covariate terms. Several
θ values are explored, as well as a multitude of mean functions, h, both
polynomial based and nonlinear. In each case, h is selected to be univariate
and smooth. Results are supplied, along with a discussion of those results.
Exploration into the estimation of θ is also discussed.
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2 Single-Index Model

2.1 Estimation of Projection Vector θ

As described in the previous chapter, the single-index model (SIM) has both
an unknown projection parameter, θ, and an unknown univariate function
h. It is more complicated than the general linear model with coefficients
vector β since both, a projection vector θ and the mean function h, must
be estimated. Upon making observations (xi, Yi), i = 1, . . . , n where xi is a
p-dimensional covariate vector, Yi are modeled as

Yi = h(θT xi) + εi; i = 1, . . . , n.

Here h is smooth and univariate, θ is a p-vector with
∥∥θ

∥∥ = 1 and θ1 > 0,
ε1, . . . , εn are iid random variables with mean zero and a finite variance. Our
goal is to estimate both θ and h based on the observations.

2.1.1 Projection Pursuit Regression

In this project, for the simulation portion, we use the projection-pursuit re-
gression technique to estimate our θ; we also explore a weighted least-squares
approach to estimating θ. The projection pursuit regression technique is at-
tributed to Friedman and Stuetzle (1981). It approximates a regression sur-
face by a sum of empirically determined univariate functions, i.e. E[Y |X = x]
is approximated by

∑r
j=1 gj(β

T
j x). The complete details of the estimation of

g’s and β’s can be found in Friedman and Stuetzle. The algorithm finds a set
of vectors β1,. . .,βr (for the SIM, r = 1) that minimizes the sum of squares
of the residuals. The approximation is constructed in an iterative manner:
(1) First the residuals and the term counter are initialized,

ri ← Yi; i = 1, . . . , n

M ← 0

(2) For a given projection, αT x, a smooth represention Sα(αT x) is con-
structed. Then a “Figure of Merit” (criterion of fit), I(α) for that particular
linear combination is computed by

I(α) = 1−
n∑

i=1

(ri − Sα(αT xi))/
n∑

i=1

r2
i

The coefficient αM+1 that maximizes I(α) (the “projection pursuit”) is then
found, along with the corresponding smoother SαM+1

.
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(3) If the “figure of merit” is smaller than a user specified threshold, the
algorithm terminates and outputs the computed αM+1, else the residuals
and term counter are updated as follows:

ri ← ri − SαM+1
(αT

M+1xi), i = 1, . . . , n

M ←M + 1,

and step two is then repeated. The complete details of the algorithm are
described in Section 2 of Friedman and Stuetzle (1981).

Thus the PPR algorithm finds a θ̃ = αM+1 that works in estimating
our h(θT X) by setting r = 1, the number of terms to include in a final PPR
model. However the PPR algorithm does not necessarily estimate the unique
θ used in the model.

2.1.2 Weighted Least-Squares

Another technique that can be used to estimate θ is the least-squares method.
Define

h(u|β) = E[Y |βT X = u].

When we have β = θ,

h(u|θ) = E[Y |θT X = u] = E[h(θT X) + ε|θT X = u] = h(u).

Whence,
h(u|β)→ h(u), as β → θ.

Thus, given the uniqueness of θ, if h(u|θ̂) is approximately equal to h(u)
for some estimator θ̂, we can assume our estimator, θ̂ is close to the actual
projection vector, θ. Therefore, given h, the θ̂ value corresponding to mini-
mizing the sum of distances,

∑n
i=1 d(h(ui|β), h(ui)) with respect to β, where

d is a distance measure (typically absolute value or squared distance) is taken
as our estimator θ̂. Unfortunately, neither h(u|β) or h(u) are known, and
therefore must be estimated. We estimate h(ui) by Yi, and h(u|β) by a ker-
nel estimator or local linear regression or some other suitable method. We
give a brief description of kernel estimation of h(u|β) in the next subsection.
Then if the estimator of h(·|β) is ĥ(·|β), one can estimate the above distance
function by

Ŝ(β) =
n∑

i=1

(Yi − ĥi(β
T xi|β))2.

Now, we can estimate θ by minimizing Ŝ(β) with respect to β (Lin 2002).
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For the simulation study in this project, the projection pursuit regression
technique for estimating θ is used exclusively. The weighted least-squares
and methods to estimate the unique θ are discussed in the conclusion section,
although no simulations using that approach are currently conducted.

2.2 Estimation of Link function h

Upon estimating the θ with some θ̂, our next step is to estimate the uni-
variate function h. In this project, a kernel smoothing estimator is used for
estimating the smooth function h. However local linear regression or spline
regression could also be used in this estimation.

To estimate our mean function, a Nadaraya-Watson kernel smoothing is
used,

Ŷi = ĥi(ui|θ̂) =

∑n
j=1 Ka(ui − uj)Yj∑n

j=1 Ka(ui − uj)
(2)

where ui = θ̂T xi, Ka(u) = K(u/a) for some symmetric kernel function K (e.g.
standard normal). The value a is the bandwidth parameter for the kernel
estimation and must be specified. This is usually done by some data based
selection criterion. A popular method is the cross-validation (CV) criterion.
The simple CV criterion selects a bandwidth a through minimization of

CV (a) =
1

n

n∑
i=1

(Yi − Ŷ ∗
i )2

where Ŷ ∗
i is the predicted Y at the ith data point from a reduced kernel

density estimate that does not use the ith observation to estimate the values
of g at that point. That is, Ŷ ∗

i is given by the formula

Ŷ ∗
i =

∑n
j 6=i YjKa(ui − uj)∑n

j 6=i Ka(ui − uj)
.

By minimizing CV (a) with respect to a, we find the best bandwidth for
the given observations. Using the bandwidth in (2) we can then find our
estimators for the function h evaluated at θ̂T xi.

2.3 Inference about the Single-Index Model

Once we have an estimate for the model’s link function h(θT xi), we can make
inference. In this project we calculate a mean squared error (MSE) of our
estimate against the actual signal. This MSE is an indication as to how close
our estimated link function ĥ(θ̂T xi) is to the actual mean function.

9



We also find an estimate for the variance of our error term, ε. To find an
unbiased estimator for the variance of ε, we follow the method described in
Hastie and Tibshirani (1990). The kernel smoothing method for capturing
the signal finds a linear smoother operator, Sa, such that Ŷ = SaY , where
a is the bandwidth. In estimating the variance of our error term, ε, we first
find the Sum of Squared Errors (SSE). Hastie and Tibshirani provide several
forms for the degrees of freedom for our smoothing model, and hence allow
us to find an unbiased estimator for σ2. In a typical regression example
(such as the general linear models described in Chapter 1), we have n− k as
the degrees of freedom, where n is the sample size, and k is the number of
covariates. An unbiased estimator for σ2 can made by

σ̂2 =

∑n
i=1(Ŷi − Yi)

2

n− k
.

An analogous result is n−tr(2Sa−SaS
T
a ), as the approximate degrees of free-

dom for error, for the linear smoothing operator, Sa (Hastie and Tibshirani
1990). Whence we can find a reasonable estimator for σ2 by

σ̂2 =

∑n
i=1(Ŷi − Yi)

2

n− tr(2Sa − SaSa)
.

The smoothing matrix, Sa, is symmetric and each element has the form

sij =
Ka(ui − uj)∑n
l=1 Ka(ui − ul)

.

With some matrix algebra, we can simplify the denominator for our error
variance estimator. First we have:

tr(Sa) =
n∑

i=1

Ka(0)∑n
l=1 Ka(ui − ul)

.

Since Sa is symmetric, simplification shows that

tr(S2
a) =

n∑
i=1

n∑
j=1

s2
ij,

which allows us to calculate the approximate degrees of freedom used for the
estimator of σ2. The variance of the error term ε, is then estimated from

σ̂2 =

∑n
i=1(Ŷi − Yi)

2

n− 2tr(Sa) + tr(S2
a)

. (3)
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3 Simulation Details

In this section, a detailed description of the simulation performed is pro-
vided. The goal of the simulation is to compare the performance of linear
modeling techniques with that of the semiparametric technique, single-index
model. This is done by generating a random sample from some known mean
function, h, and a projection vector, θ. The sample is then fitted to an as-
sortment of linear models and a single-index model. The predicted means
are then compared to the actual mean function used in generating the data
and the variance of the error term in the model is then estimated based on
the observations and the predicted values using linear models and the SIM,
respectively.

3.1 Algorithm for Simulation

• The first step in the algorithm is generate a random sample. This is
done using a suitable random number generator (RNG). The predictor
variables, xi = (xi1, xi2, . . . , xip), for the ith observation in a sample of
size n is obtained such that xij ∼ Unif(0,1), j = 1, . . . , p. Error terms
are generated N(0,σ2), with σ2 being the known variance of the error
terms. The ith response variable is then calculated by

Yi = h(θT xi) + εi; i = 1, . . . , n.

• Now, the observations (Yi, xi), i = 1,. . .,n, where xi is a p-dimensional
vector are fitted to a sequence of linear models as follows:

– Using the method described in section 1.3, create new predictor
variables using the components of X to include degree 2, degree 3,
. . ., degree 10 terms, including crossproduct terms. We will then
fit a linear model using this new set of predictor variables and the
response variables. This can be seen with an example. Suppose
p = 2. Our original data matrix X is of the form:

X =


x11 x12
...

...
xi1 xi2
...

...

 for i = 1, . . . , n.

We will then create a new matrix of predictor variables by includ-
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ing squares and crossproduct terms:

X2∗ =


x11 x12 x2

11 x2
12 x11x12

...
...

...
...

...
xi1 xi2 x2

i1 x2
i2 xi1xi2

...
...

...
...

...

 for i = 1, . . . , n

where the 2∗ represents the model of degree 2 (3∗ would include
cubes, and so on). Our new set of predictor variables has p2∗ = 5.
We can continue this process for cubes, quartics and so on, this
simulation expands to degree 10.

– We can then use a linear modeling routine (glm in R) with Y
as the set of response variables, and X2∗ as the set of predictor
variables, to get a set of estimated response variables Ŷ 2∗ where

Ŷi
2∗

= β̂0 + β̂1xi1 + β̂2xi2 + β̂3x
2
i1 + β̂4x

2
i2 + β̂5xi1xi2; i = 1, . . . , n.

Using similar methods, we’ll get a set of 10 different estimated
response vectors, Ŷ 1∗, Ŷ 2∗, . . ., Ŷ 10∗ for each of our model types.

• Since both the exact signal, h(θT x), and variance of error, σ2 are known,
the performance of the linear modeling technique is compared to the
known values. We first estimate an integrated mean squared error for
the jth model, j = 1,. . .,10, against the known signal, h(θT x). That is,
calculate at the kth simulation

γj∗
k =

1

n

n∑
i=1

(
Ŷ

j∗(k)
i − h(θT xi)

)2

; for j = 1, . . . , 10

where k is the simulation number (1 ≤ k ≤ M) and Ŷ
j∗(k)
i is the

predicted ith response for the jth model at the kth simulation. A running
sum, one for each execution of the algorithm, of each γj∗

k for j = 1,. . .,10
is stored to compute the estimated average integrated mean squared
error for the jth model. That is, at the completion of the all simulations,
set

γ̄j∗ =
1

M

M∑
k=1

γj∗
k ; for j = 1, . . . , 10,

where M is the number of simulations. Thus, γ̄j∗ for j = 1,. . .,10 is
a reasonable estimator of the integrated mean squared error for each
of the linear model regressions performed. These averages will later be
compared to the same indicator for the single-index model.

12



• The next step is to estimate the variance of the error term. This is
done in the typical way. At the kth simulation, calculate

σ̂
2(k)
j∗ =

1

n− pj∗ − 1

n∑
i=1

(
Ŷ

j∗(k)
i − Yi

)2

; for j = 1, . . . , 10.

Each estimator for σ2 is then compared to the known value using

dk(σ̂
2
j∗(k), σ

2) =
(
σ̂

2(k)
j − σ2

)2

; for j = 1, . . . , 10

where k represents the simulation number. As with the integrated mean
squared error, at the conclusion of the simulations, we will calculate
the average distance to see, on average, how accurate our estimated
variance is compared to the known value, i.e.

d̄(σ̂2
j∗, σ

2) =
1

M

M∑
k=1

dk(σ̂
2(k)
j∗ , σ2); for j = 1, . . . , 10

with M being the number of simulations. The average distances will
later be compared to a similar quantity calculated for a single-index
model.

• As another measure to choose the best linear model, Akaike Informa-
tion Criteria (AIC) and Bayesian Information Criteria (BIC) are used.
Both AIC and BIC are used to penalize linear models for including too
many parameters. This is particularly valuable since in our examples
Taylor expansion can be used almost indefinitely for nonlinear models.
The AIC and BIC are calculated for each model, then the model with
smallest AIC and BIC, respectively, are chosen as the best linear model.
The integrated MSE and variance estimator for the best AIC and best
BIC model at each simulation iteration are then summed as above, and
the average is taken at the conclusion of M simulations. The AIC and
BIC are the minimization with respect to p of

AIC = −2(maximum log-likelihood) + 2 ∗ p

BIC = −2(maximum log-likelihood) + ln(n) ∗ p

where p parameters in the model and n is the number of observations.
Under the normal error model, (Burnham and Anderson 2002) the AIC
and BIC can be computed by

AIC = n ln(
RSS

n
) + 2 ∗ p
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BIC = n ln(
RSS

n
) + ln(n) ∗ p

where RSS is the standard Residual Sum of Squares.

• Once the linear models and the comparative measures have been calcu-
lated, the single-index model will be fitted. The details of calculating
the SIM are provided in Chapter 2. Using a Projection Pursuit Re-
gression routine (ppr in R) with the number of terms set to 1, a θ̂ is
calculated. Upon having an estimate for the projection vector, a ker-
nel smoothing routine can be used to estimate the univariate function
h. First we find a suitable bandwidth for the kernel smoothing using
the Cross-Validation Criterion (h.select in R) discussed in Chapter 2.
Once projection vector and bandwidth are found, kernel smoothing will
result in a set of predictor variables:

Ŷ = SaY

where Sa is the smoothing matrix resulting from input values θ̂T xi and
our observed Yi’s, with bandwidth a. In this project, we follow the
routine ksmooth in R to perform our kernel smoothing. This routine
takes the specified bandwidth and scales the kernels so their quartiles
are at +/- ’0.25’ times the specified bandwidth. That is,

a∗ =
0.25 ∗ a

z0.750

where P{Z < z0.750} = 0.75 for the r.v. Z ∼N(0,1). This adjustment is
made in the ksmooth routine for boundary correctness. To compensate,
when computing our smoothing matrix, we actually find Sa∗ and use
it to approximate the degrees of freedom for the kernel smoothing. We
use the Gaussian kernel function as the K function.

• Once the projection vector and univariate function are approximated,
an integrated MSE is then calculated

γSIM
k =

1

n

n∑
i=1

(
ĥ(θ̂T xi)− h(θT xi)

)2

where k is for the kth simulation, 1 ≤ k ≤M . As with the linear model,
at the conclusion of the simulation runs, we calculate the average mean
squared error as

γ̄SIM =
1

M

M∑
k=1

γSIM
k .
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This value will then be compared to the calculated average MSEs for
the linear models. Likewise, an estimator for the variance of error will
be calculated using (3). The estimator for σ2 is then compared to the
known value using the squared difference

dk(σ̂
2
SIM , σ2) =

(
σ̂2

SIM − σ2
)2

where k represents the kth simulation iteration. Following completion
of M simulations, the average distance is calculated by

d̄(σ̂2
SIM , σ2) =

1

M

M∑
k=1

dk(σ̂
2
SIM , σ2).

This average distance will then be compared to that of the linear mod-
els.

• At the conclusion of M simulations, we will compare the performance
of the linear modeling techniques, with the performance of the single-
index model. This is done by a simple ratio calculation:

ratio(γj∗) = γ̄j∗/γ̄SIM ; for j = 1, . . . , 10.

A value greater than 1, would indicate the single-index model per-
formed better than the linear model in estimating the mean function,
on average. Likewise, a similar ratio for variance is computed:

ratio(d(σ̂2
j∗, σ

2)) = d̄(σ̂2
j∗, σ

2)/d̄(σ̂2
SIM , σ2); for j = 1, . . . , 10.

If the ratio is greater than 1, this would indicate the single-index model
performed better than the linear model in estimating the variance for
the error term.

• During the M simulations, we also want to count the number of times
a glm model performs better than the single-index model. That is,
during any given iteration k, if γj∗

k <γSIM
k for some j, then model j

performed better than the single-index model in predicting the mean
function. Likewise, if dk(σ

2
j∗, σ

2)<dk(σ
2
SIM , σ2) for some j, then model j

performed better than the single-index model in predicting the variance
of our error term.
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4 Simulation Results

A series of simulations are performed to compare the performance of the
single-index model to the linear modeling techniques.

4.1 Simulation for mean function h(u) = u(sin(4πu)+1.5)

In this subsection, we provide simulation results on the mean function, h(u) =
u(sin(4πu) + 1.5). Over the interval (-1.5, 1.5), this mean function has the
form shown in Figure 1.

Figure 1: Mean Function h(u) = u(sin(4πu) + 1.5)

4.1.1 Graphical Analysis

We first perform some graphical analysis for this particular mean function.

• X = (x1, x2)
T are fixed such that θT x results in a sequence of fixed u

values, and hence h(u) is fixed.

• The true index vector θ = (
√

3
2

, 1
2
)T
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• The error term ε is normally distributed with µ = 0 and σ2 = 0.64

• M = 50 simulations will be run, with a sample size n = 101.

• The SIM is computed for each simulation iteration based on the ob-
served Y ’s and the fixed X. The average for each Ŷ = SY will be
calculated to visually inspect the accuracy of the SIM and the graph
of the average approximated SIM and the fixed x values are seen in the
figure 2 below. Approximations for the MSE and variance are calcu-
lated.

• This graphical analysis can be thought of as analogous to the numerical
comparisons below. However it should be noted that since the x’s are
fixed in this graphically study, numerical estimations are not consistent
with the numerical comparison performed in the next subsection.

Figure 2: Average SIM estimation

As seen in Figure 2, the SIM (plotted with a solid line) appears to capture the
signal (plotted by points). In fact, the averaged (over 50 simulations) mean
squared error is 0.1204063. The SIM also does a decent job of estimating
the variance of the error term. The average distance between the estimated
variance, and the known variance is 0.01195378 over 50 simulations.
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In the next graphical analysis, we see how the SIM performs over the
interval (− 1√

2
, 1√

2
).

• As before, X = (x1, x2)
T are fixed such that θT x results in a sequence

of fixed u values, and hence h(u) is fixed.

• The true index vector θ = ( 1√
2
,− 1√

2
)T

• The error term ε is normally distributed with µ = 0 and σ2 = 0.64

• M = 50 simulations are run, with a sample size n = 101.

• The SIM is computed for each simulation iteration based on the ob-
served Y ’s and the fixed X. The average for each Ŷ = SY will be
graphed to visually inspect the accuracy of the SIM. Approximations
for the MSE and variance are calculated.

• The graph of the average approximated SIM and the fixed x values are
seen in Figure 3 below.

Figure 3: Average SIM estimation

As the image shows, the SIM does a reasonable job of capturing the
oringal signal. Visually, it does not seem to perform as well as the previous
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graph; however the averaged mean squared error decreases to 0.07803931.
This decrease is attributed to the range of the function over this interval. In
the previous image, although visually the SIM appears to do as well of a job,
the difference in the MSE is attributed to the increase in the function as the
x-values increase. That is, as θT x grows, h grows, and the accuracy of the
SIM decreases. The SIM also does a decent job of estimating the variance
of the error term. The average distance between the estimated variance
and the known variance is 0.01257754 over 50 simulations, indicating no
difference between the two graphical simulations in the accuracy between
the approximated variance.

4.1.2 Numerical Comparisons against GLM

In this section we compare the SIM to the GLM numerically. Tables 1 and
2 give the results of this particular simulation. Table 1 gives the ratio of
the performance of the linear modeling technique to the single-index model.
That is, the first column comprises

γ̄j∗/γ̄SIM , for j = 1, . . . , 10

and the second column gives

d̄(σ̂2
j∗, σ

2)/d̄(σ̂2
SIM , σ2), for j = 1, . . . , 10.

A value greater than one suggests the single-index model performed better.
The model numbers correspond to the degree of the Taylor expansion, that
is, model 3 includes cubed terms. The AIC and BIC models represent the
models that are selected based on the respective criteria. Table 2 provides
counting statistics that show how many simulations had a linear model per-
form better.

• X = (X1, X2)
T with X1, X2 ∼Uniform[0,1]

• The true index vector θ = (
√

3
2

, 1
2
)T

• The error term ε is normally distributed with µ = 0 and σ2 = 0.16

• M = 500 simulations, sample size n = 67.
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Model MSE Ratio (GLM/SIM) Variance Ratio (GLM/SIM)
1 4.5621 (0.2615/0.0573) 22.4073 (0.0793/0.0035)
2 4.3388 (0.2487/0.0573) 21.1126 (0.0748/0.0035)
3 3.8691 (0.2218/0.0573) 17.5334 (0.0621/0.0035)
4 3.3747 (0.1934/0.0573) 13.7897 (0.0488/0.0035)
5 2.2641 (0.1298/0.0573) 5.0659 (0.0179/0.0035)
6 1.5425 (0.0884/0.0573) 1.0740 (0.0038/0.0035)
7 1.6470 (0.0944/0.0573) 0.6087 (0.0022/0.0035)
8 1.9021 (0.1090/0.0573) 0.6929 (0.0025/0.0035)
9 2.3236 (0.1332/0.0573) 1.2170 (0.0043/0.0035)
10 2.7730 (0.1589/0.0573) 17.2299 (0.0610/0.0035)
AIC 2.7730 (0.1589/0.0573) 17.2299 (0.0610/0.0035)
BIC 2.8790 (0.1650/0.0573) 6.4809 (0.0227/0.0035)

Table 1: GLM vs. SIM

Number of Simulation
Better GLM MSE 57
Better GLM VAR 348
Better AIC MSE 13
Better AIC VAR 50
Better BIC MSE 13
Better BIC VAR 50

Table 2: # Times GLM Performed Better

The following observations were made:

• On average, the SIM performed better than the GLM in estimating the
mean function.

• Linear Models 7 and 8 performed better than the SIM in estimating
the variance of the error term.

• Using the AIC and BIC for model selection tends to select models 10
and 9, respectively; the SIM performs better than the AIC and BIC
models, on average.

• In 348 simulations, a GLM model estimated the variance more accu-
rately. When the AIC or BIC selection method is used, this number
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dropped to 50. Similarly, the number of times a GLM performed bet-
ter in approximating the mean function decreasing by nearly 80% when
AIC or BIC model selection is used.

Now we modify the true index vector to θ = (
√

3
2

,−1
2
)T The following results

were observed.

Model MSE Ratio (GLM/SIM) Variance Ratio (GLM/SIM)
1 1.4246 (0.0601/0.0422) 3.3263 (0.0049/0.0015)
2 1.4878 (0.0627/0.0422) 3.1651 (0.0047/0.0015)
3 1.3652 (0.0576/0.0422) 2.3336 (0.0034/0.0015)
4 1.4069 (0.0593/0.0422) 1.8199 (0.0027/0.0015)
5 1.4883 (0.0628/0.0422) 1.2596 (0.0019/0.0015)
6 1.7000 (0.0717/0.0422) 1.1005 (0.0016/0.0015)
7 2.0994 (0.0885/0.0422) 1.3123 (0.0019/0.0015)
8 2.5716 (0.1084/0.0422) 1.7609 (0.0026/0.0015)
9 3.1439 (0.1326/0.0422) 3.2377 (0.0048/0.0015)
10 3.7725 (0.1591/0.0422) 39.7704 (0.0587/0.0015)
AIC 3.7688 (0.1590/0.0422) 32.7886 (0.0492/0.0015)
BIC 3.3586 (0.1417/0.0422) 7.7563 (0.0116/0.0015)

Table 3: GLM vs. SIM

Number of Simulation
Better GLM MSE 150
Better GLM VAR 416
Better AIC MSE 0
Better AIC VAR 51
Better BIC MSE 16
Better BIC VAR 72

Table 4: # Times GLM Performed Better

The following observations were made:

• On average, the SIM performed better than the GLM in estimating the
mean function and the variance of the error term.

• Using the AIC and BIC for model selection tends to select models 10
and 8, respectively; the SIM performs better than the AIC and BIC
models, on average.
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• In 416 simulations, a GLM model estimated the variance more accu-
rately. When the AIC or BIC selection method is used, this number
dropped to 72 or lower, a drop of 80%. The number of GLM models
in estimating the link function, drops by nearly 90%.

Now, we modify the projection vector to θ = ( 1√
2
, 1√

2
)T and the results

were as follows.

Model MSE Ratio (GLM/SIM) Variance Ratio (GLM/SIM)
1 5.6013 (0.2839/0.0507) 44.7234 (0.0869/0.0019)
2 5.4328 (0.2754/0.0507) 44.4596 (0.0864/0.0019)
3 4.8652 (0.2466/0.0507) 38.0543 (0.0739/0.0019)
4 4.3633 (0.2212/0.0507) 32.5107 (0.0632/0.0019)
5 2.6070 (0.1321/0.0507) 8.9024 (0.0173/0.0019)
6 2.0149 (0.1021/0.0507) 3.5829 (0.0070/0.0019)
7 1.8450 (0.0935/0.0507) 1.2041 (0.0023/0.0019)
8 2.1123 (0.1071/0.0507) 1.2685 (0.0025/0.0019)
9 2.5693 (0.1302/0.0507) 2.3070 (0.0045/0.0019)
10 3.0906 (0.1566/0.0507) 27.4264 (0.0533/0.0019)
AIC 3.0906 (0.1566/0.0507) 27.4264 (0.0533/0.0019)
BIC 3.2601 (0.1653/0.0507) 11.2887 (0.0214/0.0019)

Table 5: GLM vs. SIM

Number of Simulation
Better GLM MSE 26
Better GLM VAR 337
Better AIC MSE 5
Better AIC VAR 45
Better BIC MSE 5
Better BIC VAR 46

Table 6: # Times GLM Performed Better

The following observations were made:

• On average, the SIM performed better than the GLM in estimating the
mean function and the variance of the error term.
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• Using the AIC and BIC for model selection tends to select models 10
and 9 respectively, the SIM performs better than the AIC and BIC
models, on average.

• In 337 simulations, a GLM model estimateded the variance more ac-
curately. When the AIC or BIC selection method is used, this number
dropped to 46 or lower, a drop of 86%. The number of GLM models
in estimating the link function, drops by nearly 80%.

Lastly, we compare the SIM to the GLM using θ = ( 1√
2
,− 1√

2
)T , where our

θT xi will be distributed on (− 1√
2
, 1√

2
), symmetric about the y-axis.

Model MSE Ratio (GLM/SIM) Variance Ratio (GLM/SIM)
1 1.3251 (0.0482/0.0364) 2.8343 (0.0030/0.0010)
2 1.4155 (0.0515/0.0364) 2.7116 (0.0028/0.0010)
3 1.5493 (0.0564/0.0364) 2.6038 (0.0027/0.0010)
4 1.2527 (0.0456/0.0364) 1.1398 (0.0012/0.0010)
5 1.5862 (0.0577/0.0364) 1.3081 (0.0014/0.0010)
6 1.9636 (0.0714/0.0364) 1.4527 (0.0015/0.0010)
7 2.4429 (0.0889/0.0364) 1.6499 (0.0017/0.0010)
8 2.9957 (0.1090/0.0364) 2.2593 (0.0024/0.0010)
9 3.6429 (0.1325/0.0364) 4.1994 (0.0044/0.0010)
10 4.3727 (0.1590/0.0364) 53.7057 (0.0560/0.0010)
AIC 4.3727 (0.1590/0.0364) 53.7057 (0.0560/0.0010)
BIC 3.6546 (0.1330/0.0364) 10.1696 (0.0102/0.0010)

Table 7: GLM vs. SIM

Number of Simulation
Better GLM MSE 161
Better GLM VAR 386
Better AIC MSE 0
Better AIC VAR 32
Better BIC MSE 27
Better BIC VAR 52

Table 8: # Times GLM Performed Better

The following observations were made:
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• On average, the SIM performed better than the GLM in estimating the
mean function and the variance of the error term.

• Using the AIC and BIC for model selection tends to select models 10
and 8, respectively; the SIM performs better than the AIC and BIC
models, on average.

• In 386 simulations, a GLM model estimated the variance more accu-
rately. When the AIC or BIC selection method is used, this number
dropped to 52 or lower, a drop of 86%. The number of GLM models
in estimating the link function, drops by nearly 83%.

4.1.3 Conclusions

Based on the two sets of analysis, we conclude that the SIM is at least as
good, if not better, as an estimator for the mean function u(sin(4πu) + 1.5).
The linear approach typically performed its best around models 4-7. As the
number of parameters increases, these model estimates will be infeasible to
compute and the SIM will be a viable alternative. The value of the unique
θ did not seem to effect the performance in the SIM, i.e. the SIM did not
struggle with any specific θ.

4.2 Simulation for a Logistic mean function

Here we perform a simulation study when the mean function is logistic, i.e.
h(u) = 2

1+e3e−5u + 1. The mean function has the familar S-shaped form seen
in Figure 4.
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Figure 4: Logistic Mean Function h

4.2.1 Graphical Analysis

We first perform a visual inspection of the performance of the SIM.

• X = (x1, x2)
T are fixed such that θT x results in a sequence of fixed u

values, and hence h(u) is fixed.

• The true index vector θ = (
√

3
2

, 1
2
)T .

• The error term ε is normally distributed with µ = 0 and σ2 = 0.64.

• M = 50 simulations are run, with a sample size n = 67.

• The SIM is computed for each simulation iteration based on the ob-
served Y ’s and the fixed X. The average for each Ŷ = SY will be
graphed to visually inspect the accuracy of the SIM. Approximations
for the MSE and variance are calculated.

• The graph of the average approximated SIM, the best linear model and
the fixed x values are shown in Figure 5 below.

We observe the best linear model is the simple linear regression, that is, a
first order Taylor expansion on our predictor variables. Although visually,
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Figure 5: Average SIM and GLM estimation

the line does not capture the signal, it performs better numerically than the
SIM. Visually, the SIM appears to capture the trend of the mean function.
The SIM appears to be very accurate near the center of the mean function,
but struggles near the tails, the location of the horizontal asymptotes. This
seemingly allows the linear model to beat out the SIM in the numerical
simulation performed below.

4.2.2 Numerical Analysis

• X = (X1, X2)
T with X1, X2 ∼Uniform[0,1].

• The true index vector θ = (
√

3
2

, 1
2
)T .

• The error term ε is normally distributed with µ = 0 and σ2 = 0.16.

• M = 500 simulations are run, each time our sample size is n = 67.

We observe that the best linear model is the degree 1 expansion, or a
typical linear regression, this backs up the graphical claim. On average,
the linear model performs better than the SIM, but not signifcantly better.
Particuarly when AIC or BIC, models 10 and 7.5 respectively, are used in
the model selection, the SIM beats the linear models.
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Model MSE Ratio (GLM/SIM) Variance Ratio (GLM/SIM)
1 0.5032 (0.0143/0.0284) 0.7831 (0.0008/0.0010)
2 0.6359 (0.0180/0.0284) 0.8074 (0.0008/0.0010)
3 0.8261 (0.0234/0.0284) 0.7853 (0.0008/0.0010)
4 1.2468 (0.0354/0.0284) 0.8520 (0.0009/0.0010)
5 1.7434 (0.0494/0.0284) 0.9980 (0.0010/0.0010)
6 2.3157 (0.0657/0.0284) 1.1994 (0.0013/0.0010)
7 2.9700 (0.0842/0.0284) 1.5288 (0.0016/0.0010)
8 3.7619 (0.1067/0.0284) 2.1434 (0.0022/0.0010)
9 4.6321 (0.1314/0.0284) 3.7209 (0.0039/0.0010)
10 5.5055 (0.1562/0.0284) 45.5301 (0.0476/0.0010)
AIC 5.5055 (0.1562/0.0284) 45.5301 (0.0476/0.0010)
BIC 4.2470 (0.1206/0.0284) 10.1006 (0.0101/0.0010)

Table 9: GLM vs. SIM

Number of Simulation
Better GLM MSE 383
Better GLM VAR 435
Better AIC MSE 0
Better AIC VAR 51
Better BIC MSE 96
Better BIC VAR 125

Table 10: # Times GLM Performed Better

4.2.3 Conclusion

We conclude that overall, the SIM does not perform as well as the GLM,
however it is not significantly worse. As will be discussed in the following
sections, the SIM’s performance improves when a better estimate for the
projection vector θ is used. The SIM should be considered as an alternative
to the GLM for a logistic function. This should particularly be true when
the domain is wide.
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4.3 Simulation to provide motivation for predicting
more accurate θ

In this subsection, we perform an abbreviated simulation similar to the sim-
ulations above. Analyzing the following mean functions and simulations will
demonstrate, by example, the importance of predicting the projection vector
θ, and therefore provide motivation for estimating a more accurate projection
vector.

4.3.1 Mean function h(u) = sin2(2πu) + 1, unknown θ

In this subsection, we supply simulation results on the mean function, h(u) =
sin2(2πu) + 1. Over the interval (-1.5, 1.5), this mean function has the form
in Figure 6.

Figure 6: Mean Function h(u) = sin2(2πu) + 1

We note the high number of oscillations and suspect the kernel smooth-
ing routine will struggle in capturing the mean function. Furthermore, we
suspect a linear model bisecting (Ŷ = Ȳ ) the range of the function will do a
reasonable job numerically, in predicting the mean function and variance.

We first perform a graphical analysis. Here we fix our x-values and plot
the original mean function, comparing it to the average predicted mean func-
tion by linear model #6 (typically the best numerically) and the SIM. As
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Figure 7: Average Sim and GLM estimates

can be seen in figure 7 graph, the GLM captures the first and last relative
maximums fairly well and bisects the center oscillation resulting in a good
numeric estimate for the signal and variance. The kernel smoother used in
estimating the mean function in the SIM captures the overall trend of the
mean functionbut there is a large bias. The estimated function is under-
smoothed, and appears shifted to the left of the actual mean function. These
two properties result in the inferior performance in the numeric comparisons.

• X = (X1, X2)
T with X1, X2 ∼Uniform[0,1].

• The true index vector θ = (
√

3
2

, 1
2
)T .

• The error term ε is normally distributed with µ = 0 and σ2 = 0.16.

• M = 500 simulations are run, each time our sample size is n = 67.

Results are provided in Table 11 and 12.
We see that the GLM predicts both the MSE and Variance better than

the SIM. This can be attributed to the ocscillations in the mean function.
That is, since the mean function has three complete periods, or oscillations
in the interval (0,

√
3

2
), a linear model can obtain a reasonable MSE or σ̂2 by
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Model MSE Ratio (GLM/SIM) Variance Ratio (GLM/SIM)
1 1.2879 (0.1266/0.0983) 1.7345 (0.0182/0.0105)
2 1.2799 (0.1259/0.0983) 1.6880 (0.0177/0.0105)
3 1.2563 (0.1235/0.0983) 1.5292 (0.0160/0.0105)
4 1.1450 (0.1126/0.0983) 1.1609 (0.0122/0.0105)
5 0.8864 (0.0872/0.0983) 0.4563 (0.0048/0.0105)
6 0.8140 (0.0800/0.0983) 0.1980 (0.0021/0.0105)
7 0.9028 (0.0888/0.0983) 0.1631 (0.0017/0.0105)
8 1.1035 (0.1085/0.0983) 0.2265 (0.0024/0.0105)
9 1.3530 (0.1330/0.0983) 0.3976 (0.0042/0.0105)
10 1.6237 (0.1597/0.0983) 5.6377 (0.0592/0.0105)
AIC 1.6235 (0.1596/0.0983) 5.0148 (0.0527/0.0105)
BIC 1.5851 (0.1558/0.0983) 1.3408 (0.0141/0.0105)

Table 11: GLM vs. SIM

Number of Simulation
Better GLM MSE 363
Better GLM VAR 463
Better AIC MSE 29
Better AIC VAR 151
Better BIC MSE 33
Better BIC VAR 155

Table 12: # Times GLM Performed Better

simply bisecting the function with respect to the range of the mean function.
This can be seen in the graphical analysis above.

4.3.2 Mean function h(u) = sin2(2πu) + 1, known θ

In performing these simulations, the projection vector θ is known. That is,
we do not use the PPR routine, or any other method of estimating a θ. In
essence, we are comparing the kernel smoothing technique to that of linear
modeling for this particular function.

We first perform a visual comparison, shown in Figure 8. Visually, the
SIM appears to predict the mean function almost exactly, while the linear
model #6 deviates from the mean function. It should be noted that this
particular GLM is not identical to the previous GLM graph in Figure 7, as
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Figure 8: Average Sim and GLM estimates

variability in the observed Y ’s alters the average GLM, and hence the graph.
We now do a numerical comparison.

• X = (X1, X2)
T with X1, X2 ∼Uniform[0,1]

• The true index vector θ = (
√

3
2

, 1
2
)T , however it is known and no longer

estimated with the PPR routine.

• The error term ε is normally distributed with µ = 0 and σ2 = 0.16.

• M = 500 simulations are run, each time our sample size is n = 67.
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Model MSE Ratio (GLM/SIM) Variance Ratio (GLM/SIM)
1 3.2939 (0.1259/0.0382) 15.8286 (0.0181/0.0011)
2 3.2625 (0.1247/0.0382) 15.1976 (0.0174/0.0011)
3 3.2161 (0.1230/0.0382) 13.9723 (0.0160/0.0011)
4 2.9210 (0.1117/0.0382) 10.7494 (0.0123/0.0011)
5 2.2705 (0.0868/0.0382) 4.4383 (0.0051/0.0011)
6 2.0859 (0.0798/0.0382) 1.9777 (0.0023/0.0011)
7 2.3250 (0.0889/0.0382) 1.4493 (0.0017/0.0011)
8 2.8696 (0.1097/0.0382) 1.9942 (0.0023/0.0011)
9 3.4905 (0.1335/0.0382) 3.5504 (0.0041/0.0011)
10 4.1636 (0.1592/0.0382) 44.7675 (0.0513/0.0011)
AIC 4.1636 (0.1592/0.0382) 44.7675 (0.0513/0.0011)
BIC 4.0802 (0.1559/0.0382) 12.1516 (0.0134/0.0011)

Table 13: GLM vs. SIM

The SIM performance increases by a factor of three with respect to the
mean function estimator, and a factor of 10 with respect to the variance
estimator. The SIM performs better than all the linear models when θ is
known.

4.3.3 Mean function h(u) = sin(2πu) + 1.5, unknown θ

Following the previous simulation, we provide motivation to estimating a
more accurate θ. The mean function, h(u) = sin(2πu) + 1.5 has the familar
form in Figure 9. We will estimate the projection vector, using the PPR
routine discussed in chapter 2.

We first perform a visual inspection of the SIM’s performance, figure 10.

• X = (x1, x2)
T are fixed such that θT x results in a sequence of fixed u

values, and hence h(u) is fixed.

• The true index vector θ = (
√

3
2

, 1
2
)T .

• The error term ε is normally distributed with µ = 0 and σ2 = 0.64.

• M = 50 simulations are run, with a sample size n = 101.

We observe that the SIM does a good job capturing the trend of the mean
function. That is, our SIM graph looks like a sine function, however, the SIM
is shifted to the left and missing each respective fixed point, h(θT xi).
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Figure 9: Mean Function h(u) = sin(2πu) + 1.5

Figure 10: Average SIM estimation
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Now we perform a numerical comparison between the GLM and the SIM.

• X = (X1, X2)
T with X1, X2 ∼Uniform[0,1].

• The true index vector θ = (
√

3
2

, 1
2
)T .

• The error term ε is normally distributed with µ = 0 and σ2 = 0.16.

• M = 500 simulations are run, each time our sample size is n = 67.

Model MSE Ratio (GLM/SIM) Variance Ratio (GLM/SIM)
1 3.8491 (0.4466/0.1160) 5.1481 (0.2227/0.0433)
2 1.1342 (0.1316/0.1160) 0.4734 (0.0205/0.0433)
3 0.7758 (0.0900/0.1160) 0.1959 (0.0085/0.0433)
4 0.3443 (0.0399/0.1160) 0.0232 (0.0010/0.0433)
5 0.4455 (0.0517/0.1160) 0.0248 (0.0011/0.0433)
6 0.5776 (0.0670/0.1160) 0.0291 (0.0013/0.0433)
7 0.7410 (0.0860/0.1160) 0.0346 (0.0015/0.0433)
8 0.9289 (0.1078/0.1160) 0.0517 (0.0022/0.0433)
9 1.1423 (0.1325/0.1160) 0.0924 (0.0040/0.0433)
10 1.3695 (0.1589/0.1160) 0.9238 (0.0400/0.0433)
AIC 1.3695 (0.1589/0.1160) 0.9238 (0.0400/0.0433)
BIC 1.2442 (0.1443/0.1160) 0.2582 (0.0112/0.0433)

Table 14: GLM vs. SIM

We see that, on average, the GLM dominates the SIM both with respect
to the estimation of the MSE and the error variance. If the AIC and BIC
criteria are used, the SIM’s performs better in estimating the mean function,
but still loses out with respect to the variance estimator.

4.3.4 Mean function h(u) = sin(2πu) + 1.5, known θ

As in above analysis of the sine-squared mean function, the projection vector
θ is known in this analysis. That is, we no longer estimate it using the PPR
algorithm. Graphically, the SIM’s performance increases dramatically as
seen in figure 11. When θ was unknown, our SIM misses the mean function
consistently. However when the known θ is used, the SIM no longer just
captures the trend of the mean function, but captures the mean function
itself to a very high degree. The numerical analysis below supports this
claim.
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Figure 11: Average SIM estimation

Performing the same numeric simulation as above, except θ is known,
results are in Tables 15 and 16: We observe from the numeric data in

Model MSE Ratio (GLM/SIM) Variance Ratio (GLM/SIM)
1 13.3515 (0.4416/0.0331) 225.7493 (0.2144/0.0009)
2 3.9869 (0.1319/0.0331) 21.1651 (0.0201/0.0009)
3 2.6593 (0.0880/0.0331) 8.2259 (0.0078/0.0009)
4 1.1483 (0.0380/0.0331) 1.0317 (0.0010/0.0009)
5 1.4912 (0.0493/0.0331) 1.0905 (0.0010/0.0009)
6 1.9761 (0.0654/0.0331) 1.3279 (0.0013/0.0009)
7 2.5617 (0.0847/0.0331) 1.7336 (0.0016/0.0009)
8 3.2054 (0.1060/0.0331) 2.3145 (0.0022/0.0009)
9 3.9184 (0.1296/0.0331) 4.0672 (0.0039/0.0009)
10 4.6848 (0.1550/0.0331) 50.1703 (0.0476/0.0009)
AIC 4.6848 (0.1550/0.0331) 50.1703 (0.0476/0.0009)
BIC 4.3415 (0.1437/0.0331) 13.0491 (0.0117/0.0009)

Table 15: GLM vs. SIM
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Number of Simulation
Better GLM MSE 153
Better GLM VAR 397
Better AIC MSE 0
Better AIC VAR 37
Better BIC MSE 7
Better BIC VAR 63

Table 16: # Times GLM Performed Better

Tables 15 and 16 that the SIM performs better, on average, than the GLM
in all 10 models. Using the AIC and BIC criteria furthers this claim. In
500 simulations, only 7 BIC models did a better job estimating the mean
function, and only 63 did better in estimating the variance of the error term.

4.3.5 Conclusions

These particular examples demonstrate that the estimation of the projection
vector, θ, is very important in getting an accurate SIM. That is, the kernel
smoothing routine does a suitable job in estimating the univariate mean
function h, when a unique θ has been accurately estimated. These examples
provide motivation to estimate the unique θ as precise as possible, rather
than just a compatible projection vector as the PPR routine provides.
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5 Conclusion and Future Research

In this project, through a series of simulations, we demonstrated the single-
index model as a viable alternative to linear modeling techniques. This is
particularly the case for highly nonlinear models. In the future, the sim-
ulations will be expanded to include three and four-dimensional predictor
vectors. With such expansion, it is hypothesized the SIM will be a viable
option for many more functions, particularly those that require many terms
in the Taylor expansion. With three or four predictor variables, the number
of covariate terms in a Taylor expansion will grow exponentially, and such
linear estimations will become infeasible. The SIM will then be an adequate
estimate.

This project also provides motivation for estimating the projection, or in-
dex vector, more accurately. Simulation results demonstrate the importance
of estimating an accurate index vector. In the future, the goal is to address
the estimation of the projection vector. A weighted-least squares approach
will be used. Currently we are working on a scheme that uses an initial grid
search to approximate an initial guess projection vector. A nonlinear min-
imization technique is then used to get a more accurate approximation for
the projection vector.

In the present cases, the grid search is limited to previous knowledge
about the index vector, that is its dimensionality. A generalization of the
grid search is one stated goal. The nonlinear minimization routine does not
necessarily guarantee the necessary conditions for our projection vector to be
unique and identifiable. That is, the nonlinear minimization tool does not
include the constraints that

∥∥θ
∥∥ = 1 and θ1 > 0. Future work will attempt

to use these methods to construct an algorithm that will consistently and
accurately approximate the unique index vector.
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