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Abstract 
 

The classic pick-up stones game, where some variable number of stones is on 
a table and two players take turns removing some number of stones from a set of 
legal moves, has been played for years.  The game can be fundamental in the 
development of logical thinking and strategy.  Each game can vary by the number 
of stones, the legal moves, playing asymmetrically (where each player has a 
different set of legal moves) and by factoring in rules that prevent players from 
repeating the opponents previous move.   

The pick-up stones game can be simulated using a computer with an 
implemented dynamic programming algorithm in linear time with respect to the 
number of stones.  Most variations of the game can be simulated in a linear (or 
almost linear) time, with the only disparity being the constant term in the 
asymptotic complexity.  This constant term is effected by the type of game and 
mainly by the size and selection of legal moves.  With slight variations, the 
overall analysis of the simulation of the game can be achieved in linear-time 
algorithms. 

When analysis is performed checking against other criteria (besides the 
increase of the number of stones), such as an increase in the size of the set and the 
number of stones, the experimental run-time drastically becomes worse, but 
theoretical analysis suggest the run-time will eventually become linear, with the 
slope of the line being comparatively large. 

Keywords – dynamic programming, pick-up stones, asymptotic complexity, 
analysis, simulation, two-player games, gaming theory. 
 

1 Introduction 
 
Two-player games are the most studied type in game theory.  The classic game of two players 
picking up a variable number of stones until no stones or no legal moves remains is a classic 
example.   
 
An Example: Given two players, say Kevin and Amy, a set of legal moves, say {1, 2, 3} and the 
number of stones, say 12, with Kevin going first, each player will remove stones from the table.  
Kevin may remove 3 and now only 9 stones remain.  Amy removes 3 stones and leaves 6.  Kevin 
again removes 1, so only 5 stones remain.  Amy removes 1 stone and then Kevin picks up 3 
stones.  At this point, only one stone remains, Amy picks it up and now there are no legal moves 
left for Kevin since no stones are remaining, so Amy wins! 
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Variations of this game exist as well, with rules that limit the possible moves by prohibiting 
previous moves and giving each player their own set of legal moves.  This paper and the research 
conducted outlines the steps to design a strategy using dynamic programming to simulate various 
implementations of the pick-up stones game.   Several dynamic algorithms are implemented in 
the process and experimental timing is conducted to demonstrate the sample run-time matches 
that of the asymptotic analysis.   
 
2 The Classic (Warm-up) Game 
 
2.1 Game Description 
 
Two players are playing with some n number of stones on a table; the legal moves are contained 
in a set S.  With the assumption that both players play optimally (after all they do want to win), 
who will win?  If n=0, the second player will obviously win, since player one has no legal move 
and there are no stones left to remove. 
 
2.2 Method to simulate this game 
 
This game can easily be simulated using a dynamic algorithm and an array with n+1 elements.  
The algorithm’s implementation will be recursive and can be demonstrate with the following 
recurrence: 
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Following the simple convention, a 2 indicates a player two winning position and a 1 indicates a 
player one winning position.  The recurrence can be implemented easily using recursion and an 
array of size n+1.  We include the dynamic programming element, the array, to store previous 
known values to save on look up time, if we wish to run the algorithm again.  We start by 
checking to see if n=0, if so the winner is a 2.  If its not, then we look at each of the previous 
winning positions based on the current legal moves (i.e. if n=13, and the legal moves are 1, 2, 
and 3, we will check who is the winner at positions n = 12, 11, and 10).  If you can move to a 
position marked 2 (ie. max{f(n-Si)}=2), the current n is a player 1 winning position since by 
moving there would make the current player, player 1, the winner.  If no move to a player 2 
winning position is available, then the current n is a player 2 winning position.  If an array 
element is empty (stored with a 0 in below) at any given position ni ≤ n we make a recursive 
calls to the function.  Pseudo-code for the algorithm is provided below (the following pseudo-
code can determine and will return the winner at a position of n-stones.). 
 
 
Who_Wins(Int. Array A, Int. n, Int. Array S, Int. m) 
 1: if n = 0 
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 2: then A[0] = 2 
 3:  return 2 
 4: else for i ← 0 to m 
 5:  do  if n-S[i] ≥ 0 and A[n-S[i]] = 2 
 6:   then A[n] = 1 
 7:    return 1 
 8:   else if n-S[i] ≥ 0 and A[n-S[i]] = 0 
 9:    then x ← Who_Wins(A, n-S[i], S, m) 
10:     if x = 2 
11:     then A[n] = 1 
12:      return 1 
13:  A[n] = 2 
14:  return 2 
 
 
The complexity of this algorithm is quite simple.  Lines 1-3, 5-8 and 10-14 are clearly constant.  
Line 4 introduces a for loop that iterates m times.  Line 9 is the possible recursive call that will 
visit every n in the worst case.  The algorithm will execute m times at each position and there are 
n+1 positions giving an overall complexity of O(mn).  This appears to be somewhat quadratic, 
but in practice, m<<n and as n→∞, the algorithm will act very linear.  It is also obvious that due 
to the use of the dynamic approach, each element in the array will only be calculated a single 
time; every other occurrence at a particular element is accessed from the array in a constant time.  
There are n+1 elements, again leaving an almost linear-time algorithm.  The complexity of the 
memory use for this algorithm is O(m+n) + memory used by the recursive calls.  A clever 
programmer could use array elements of 2-bits to save the winners (this can be done with all 
algorithms described in this paper, but this point is only mentioned at here).  It should also be 
noted that since the algorithm works recursively, that with certain specific sets S, sorting the set S 
in a decreasing order may improve the run-time in practice but will have no effect on the 
complexity.  This is because the number of recursive calls is decreasing by some value in S, we 
may potentially find a 2 quicker if we deduce by the bigger value, making less recursive calls.  
But as noted, this is only in some special cases of S and in general will not improve the 
complexity of the algorithm. 
 
2.3 An example exercise 
 
We can use the above algorithm to simulate a game between two players.  Given the legal moves 
S = {1, 5, 8, 10}, we can calculate the winner at any given position (ie. a player 1 or player 2 
win) n.  Below are the winners for up to n=100.  The tables are self-explanatory.  Pick an ni, say 
68, look below, and we see a 1.  That means with 68 stones on the table, the player going first is 
going to win, assuming both players play optimally. 
 

ni 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
winner 2 1 2 1 2 1 2 1 1 1 1 1 1 2 1 2 1 2 1 

 
ni 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
winner 2 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1 1 
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ni 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
winner 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1 2 1 2 

 
ni 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
winner 1 2 1 2 1 1 1 1 1 1 2 1 2 1 2 1 2 1 

 
ni 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
winner 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1 

 
ni 91 92 93 94 95 96 97 98 99 100         
winner 2 1 2 1 2 1 2 1 1 1         

Table(s) 1: Winning positions for ni where 0 ≤ i ≤ 100 with set S = {1, 5, 8, 10} 
 

3 The No Repeat Game 
 
3.1 Game Description 
 
The no repeat game is similar to the game described in section 2 with the stipulation that neither 
player can repeat their opponent’s previous move.  For example, if Kevin and Amy are playing, 
and Kevin removes 5 stones from the pile, with the set of legal moves being {1, 3, 5}, then Amy 
can only remove 1 or 3 stones. 
 
3.2 Safe Position Definition 
 
With the stipulation that you cannot repeat moves, it no longer makes sense to simulate the game 
for winning positions since you don’t know what the optimal play will be in all cases since it 
depends on the opponent’s previous move.  Therefore, we define a position n to be safe, if 
whenever there are n stones in the pile, no matter what the previous move was, there is a winning 
strategy for the second player.  If the safe positions can be determined, the optimal move for any 
given player will be to the safe position.  For example, suppose some position k was known to be 
safe and it was my move, and I could legally move to the kth position and guarantee myself 
victory since I would be the second player to move when the game is played at the kth position.   
 
3.3 The Repeating Phenomena 
 
A keen observer may notice in the results to section 2.3 that the winning positions for each 
player seems to repeat.  This is not a singular event; in fact calculations of the safe positions 
repeat as well.  This phenomenon arises from the fact that the determination of whether or not a 
given position k is safe depends on the previous j positions, where j is the maximum element in 
the set of legal moves (ie. S).  
 
Similar to the algorithm in section 2, the determination of safe positions can be solved using a 
dynamic algorithm, but with a matrix, rather than a simple array.  The rows of the matrix are 
determined by cardinality of S and the columns by the value of n.  By expanding the matrix, it is 
obvious that positions are dependent upon the previous values and that it does repeat.  Given the 
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set of legal moves, S = {1, 2, 3, 4, 5}, the safe positions occur at n = 0, 7, 13, 20, 26, 33, … or at 
0 mod13 and 7 mod13.  That is, a position k is safe if [k]13 ≡ [0]13 or [k]13 ≡ [7]13.  Appendix A, 
section A.1 includes a formalize proof of this phenomenon with the above given set.  In general, 
this will always be the cases, and the repeating factor can be found and is dependent upon the 
largest element in S. 
 
3.4 Determining a Safe Position 
 
Solving whether a position is safe or not is similar to the dynamic algorithm given in section 2.  
The difference is that we are no longer looking for just one possible move resulting in a win, but 
rather the case where all possible moves would result in a win.  Since a safe position has been 
defined as a position where the second player is guaranteed victory, we check to make sure no 
possible moves from the current position result in a player 2 winning position.  If it is my turn, 
and there are 9 stones, and 7 is a known safe position, and 2 is a legal move, 9 cannot be a safe 
position since moving from 9 to 7 would result in myself winning.  But I made the first move 
from 9, whence it is not a guaranteed player 2 winning position and not safe.  The algorithm can 
be demonstrated with the following recurrence: 
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The algorithm that implements the recurrence constructs a matrix with m rows and n+1 columns 
where m = |S| and n is the number of stones.  From some arbitrary position, we check all possible 
moves, that is m possible moves since we do not know what the previous move was.  Within 
each move, there are m-1 possible moves, since we must ignore the previous move made.  If no 
moves result in a player 2 win, then that particular element of the matrix is safe. We store known 
results in the matrix for quick access when many calls are going to be made.  When an entire 
column contains nothing but 2’s, that particular n position is safe.  Sample pseudo-code is given 
below. 
 
 
Is_Safe(Int. Matrix (mXn) A, Int. n, Int. S, Int. m) 
 1: for i ← 0 to m 
 2:  do x ← Is_Safe_Aux(A, n, S, m, i) 
 3:  if x = 1 
 4:  then return 1 (i.e. Not Safe) 
 5: return 2 (i.e. must be Safe) 
 
Is_Safe_Aux(Int. Matrix A, Int. n, Int. S, Int. m, Int. prev) 
 6: if A[prev][n] ≠ 0 
 7:  then return A[prev][n] (i.e. it’s a stored value) 
 8: if n = 0 
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 9: then A[prev][n] = 2 
10:  return 2 
11: for j ← 0 to m 
12: do if j ≠ prev and n – S[j] ≥ 0 
13:  then x ← Is_Safe_Aux(A, n-S[j], S, m, j) 
14:   if x = 2 
15:   then A[prev][n] = 1 
16:    return 1 
17: A[prev][n] = 2 
18: return 2 
 
 
The analysis of this algorithm follows that of the first algorithm described above in section 2.  
Most of the code is performed at a constant or O(1) time, the exceptions being lines 2 and 11 
with the for loops.  Each of these loops is based on the size of S and are embedded within one-
another.  Line 13 makes a recursive call, access all n+1 values in the worst case.  Keeping in 
mind we have an mXn matrix of values.  In the worse case scenario, each column will be 
accessed and the embedded for loops will each execute fully at each column resulting in a 
O(m2n) run-time.  Again we should note that in most cases, m<<n and that as n→∞, the 
algorithm will run in an almost linear-time.  It is also obvious that since the algorithm uses a 
dynamic approach, each element of the matrix will only be calculated a single time and accessed 
afterwards in a constant fashion, this allows the algorithm to run in a more O(mn) time the more 
it is exercised.  Memory complexity is dependent on the size of the matrix, O(mn), and the 
recursive calls made. 
 
3.5 A Generalized Form 
 
The question about generalizing the algorithm to account for more than a single previous move, 
say some k previous moves, where 1 ≤ k < m (having k = m makes no sense as there would be no 
legal moves!) arises almost instantly.  One may ask, can this be done in an efficient time?  The 
algorithm to do so does not vary much from that described in section 3.4.  Instead of a single 
matrix of size mn we have an array of k matrices, or a three-dimensional array of size kmn.  The 
difference in the algorithm would be to check each of the possible previous moves against each 
of the k matrices.  This can be done by modifying the algorithm in section 5.4 to include km 
recursive calls rather than the m calls made previously.  The outside function, Is_Safe() 
would also have to take into account the k matrices by checking each matrix.  By this, we mean 
that if we want to know if some position n is safe, we would have to check n with all the possible 
k-previous moves (i.e. km).  The analysis of the algorithm follows that previously stated with the 
k factor contributing to the run-time.  The run-time would follow; O((km)2n) in the worst case 
running time.  As noted before, in practice, k ≤ m << n, so the algorithm would act in an almost 
linear fashion with respect to n.  Like the previous algorithms, since the algorithm is dynamic we 
take advantage of storing previous known values, so each element in the 3D array will only be 
calculate once, and then accessed afterwards in a constant time, leaving a O(kmn) run-time the 
more the algorithm is accessed.  Likewise for the memory use, O(kmn), and the recursive calls 
made. 
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4 An Asymmetric Game 
 
4.1 Game Description 
 
The asymmetric game occurs when the players have different sets of valid moves.  Because of 
the different sets, it no longer makes sense to discuss player-1 winning position or a player 2 safe 
position.  From tradition, we have two players, namely Lillian and Rekha, representing Left and 
Right respectively.  Each player has a set of valid moves.  We will call these sets, SL and SR, 
respectively for Lillian and Rekha.   
 
4.2 Determining Safe Positions 
 
The algorithm for determining safe positions does not vary much from determining safe 
positions in section 3.4.  The main difference is the use of two arrays, one for each player giving 
the possible legal moves.  The idea is the same, look for all potential moves seeing if they result 
in a player 1 win, then the current position is considered safe.  The only difference is that you 
check the opposing players’ possible moves.  The simulated game can be represented by the 
following recurrence: 
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If we wish to determine the safe positions for all positions up to some n we can put the algorithm 
in a loop to check all moves from 0 to n.  Pseudo-code for determining all the safe positions up 
to n is included below. 
 
 
n_Safe(Int. n, Int. Array SL, Int. mL, Int. Array SR, Int mR) 
 1:  Initialize Int. Array AL(mL X (n+1)), AR(mR X (n+1)) 
 2:  for i ← 0 to n   (Lillian going first) 
 3:  do x = n_Safe_Aux(n, AL, SL, mL, AR, SR, mR) 
 4:  output x 
 5: for i ← 0 to n   (Rekha going first) 
 6: do x = n_Safe_Aux(n, AR, SR, mR, AL, SL, mL) 
 7:  output x 
 8: Destroy AL and AR 
 
n_Safe_Aux(n, A1, S1, m1, A2, S2, m2) 
 9: for i ← 0 to m2 
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10: do x = Is_Safe(n, A1, S1, m1, A2, S2, m2, i) 
11:  if x = 1 
12:  then return 1 
13: return 2 
 
Is_Safe(n, A1, S1, m1, A2, S2, m2, move) 
14: if A2[move][n] ≠ 0 
15: then return A2[move][n] 
16: if n = 0 
17: then A2[move][n] = 2 
18:  return 2 
19: for i ← 0 to m1 
20: do if n – S1[i] 
21:  then x = Is_Safe(n-S1[i], A2, S2, m2, A1, S1, m1) 
22:   if x = 2 
23:   then A2[move][n] = 1 
24:    return 1 
25: A2[move][n] = 2 
26: return 2 
 
 
The complexity of this algorithm looks complicated, but like the other algorithms discussed turns 
out to be very linear in practice.  Each of the loops in the n_Safe function is independent, 
running in a O(n) time, we have embedded for loops at lines 9 and 19 based on two different 
variables, the maximum of the two will dominate and we make n+1 recursive calls in the worst 
case resulting in an overall O(max{m1, m2}2n) time.  Now we are running this for all 0 to n and it 
appears the algorithm should be worse, but because of the dynamic approach we are saving the 
previous results so each n+1 will only be accessed a single time leaving an overall 
O(max{m1,m2}2n)  run-time.  As with the other algorithms, in practice m1, m2 << n, therefore 
making the algorithm act in a linear fashion with respect to n.  Again, since the algorithm is 
dynamic and we use previous results (the for loops in n_Safe implement a bottom-up 
approach) and access them in a constant time.  The algorithm populates the two arrays, which is 
dictated mainly by the size of the arrays, resulting in a O(m1n + m2n) or O((m1+m2)n) run time; 
again very linear in practice.  Complexity of the memory use is O(m1n + m2n) for the matrices 
and any recursive calls made. 
 
4.3 The repeating phenomena returns 
 
In exercising a few rounds of the asymmetric game, it may quickly become apparent that 
depending on the set of legal moves, the safe positions may repeat or result in a game where the 
same player is going to win after a certain number of stones is placed on the table.  One such 
game is one where Lillian’s legal moves are {2, 5, 9} and Rekha’s moves are {3, 4, 8}.  Some 
sample output from an implementation of the algorithms above is included below; the resulting 
number corresponds to who will win in the optimally played game (i.e. a 2 is a safe position for 
the second player in the given game).  
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n = 25 
S for Lillian = { 2, 5, 9} 
S for Rekha   = { 3, 4, 8} 
 
If Lillian goes first. 
---------------------- 
 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 
------------------------------------------------------------------------------------ 
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2  2 
 
If Rekha goes first. 
-------------------- 
 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 
------------------------------------------------------------------------------------ 
  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  1  1  2  2  1  1  1  2  2  2 

 
 
From the sample output above it appears that if 10 or more stones are on the table, and both 
players play optimally, Lillian is going to win every time.  This is a fact, and the proof follows 
that of the repeating phenomena in the symmetric game.  A formalized proof is included in the 
appendix (A.2).   
 
Similar events happen with different sets of moves, if Rekha’s moves were {3, 5, 9} and Lillian 
has the same moves as the previous example, the safe position results follow a distinct pattern, 
but no guaranteed winner seems to appear.  Sample output is included below. 
 
 
n = 27 
S for Lillian = { 2, 5, 9} 
S for Rekha   = { 3, 5, 9} 
 
If Lillian goes first. 
---------------------- 
 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 
------------------------------------------------------------------------------------ 
  1  1  1  1  1  2  1  1  1  1  1  1  2  1  1  1  1  1  1  2  1  1  1  1  1  1  2  2 
 
If Rekha goes first. 
-------------------- 
 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 
------------------------------------------------------------------------------------ 
  1  2  1  1  2  2  2  1  2  1  1  2  2  2  1  2  1  1  1  2  2  1  1  1  1  2  2  2 

 
 
It is apparent in this above sample that the player who goes first is very important.  In fact, as the 
output shows, if Lillian goes first, only 5 safe positions are found, leaving much hope for 
Lillian’s changes of winning the game.  Rekha isn’t as lucky, but can win in about 50% of the 
games when going first since about half of the positions are found to be safe.  The patterns 
continue in this same fashion. 
 
The guaranteed winner phenomenon is not limited to when Lillian and Rekha have the same 
number of moves as seen in this sample outputs below. 
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n = 27 
S for Lillian = { 2, 3, 5, 7, 9} 
S for Rekha   = { 2, 3} 
 
If Lillian goes first. 
---------------------- 
 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 
------------------------------------------------------------------------------------ 
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2  2 
 
If Rekha goes first. 
-------------------- 
 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 
------------------------------------------------------------------------------------ 
  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  1  1  1  2  2 

 
 
n = 27 
S for Lillian = { 2, 4, 5, 6, 7, 9} 
S for Rekha   = { 3, 8} 
 
If Lillian goes first. 
---------------------- 
 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 
------------------------------------------------------------------------------------ 
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2  2 
 
If Rekha goes first. 
-------------------- 
 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 
------------------------------------------------------------------------------------ 
  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  1  1  2  2  2  1  1  2  2  2 

 
 
In both of the above cases, Lillian appears to be guaranteed victory if some number of stones is 
present.  As mentioned before, this phenomenon arises from the fact that the current position is 
determined by the moves the opponent can make, specifically the previous sm moves, where sm is 
the largest element in the set of the opponent’s legal moves.  In the two above cases, it should be 
apparent that Rekha’s only chance of victory is if there are a small number of stones remaining, 
otherwise Lillian can control the game and guarantee victory. 
 
4.4 Determining if a position is safe 
 
If you wanted to just determine whether or not a particular n is safe, you could use only the 
n_Safe_Aux and Is_Safe functions to do so (this is more of a pure recursive technique), just 
specifying the n.  The asymptotic complexity of this algorithm would be no different than that of 
determining the safe positions up to n.  In the worse case, every column in the array would have 
to be visited and two arrays of the same size as above would be used, resulting in no saving of 
memory.  Like the algorithm in section 4.2, finding if a position was safe or not would be done in 
a linear time with respect to n since n>>max{m1, m2} in practice.   
 
 



 11

5 Some Experimental Analysis 
 
5.1 Introduction 
 
In the following experimental analysis, the algorithm was implemented (see appendix B for 
source code) to find all the safe positions from 0 to a given n (algorithm given in section 4.2 
above) based upon the asymmetric game.  The timing of the algorithm was computed by finding 
the average of 50 executions of the algorithm.  So at a given n, the algorithm was executed 50 
times (from scratch, i.e. empty matrices) and the average time was taken.  Each of the tested n 
values is in tables in the following sections.  All experimental sampling was tested using a timing 
program (included in Appendix B – Source Code) and was exercised on a PC system with an 
AMD Athlon 700 MHz with 256 L2 Cache, 256MB RAM, a 200MHz system BUS running 
Debian GNU/Linux 2.4.21 with a 256 MB Swap space and no major processes running (e.g. 
nerdy statistical checking software like SETI). 
 
5.2 Asymmetric Game 1 
 
The claim has been repeatedly made in this report that many of these algorithms run in an almost 
linear time.  Some experimental analysis was conducted to test this claim.  This is a subset of 
possible testing that can be conducted.  The following uses Lillian’s legal moves as SL = {2, 5, 9} 
and Rekha’s legal moves as SR = {3, 4, 8}.  The difference marks the difference between the 
current and previous run-time.  Linearity of the run-time can be seen in the table and graph 
below. 
 
 

Average run-time (out of 50) 
 n run time difference n run time difference 

500,000 0.69160 --- 3,000,000 4.05260 0.6808 
1,000,000 1.36300 0.6714 3,500,000 4.69620 0.6436 
1,500,000 2.03160 0.6686 4,000,000 5.44620 0.7500 
2,000,000 2.69800 0.6664 4,500,000 6.00440 0.5582 
2,500,000 3.37180 0.6738 5,000,000 6.67840 0.6740 

Table 2: Run-times (seconds) and number of stones (n) for Game 1 
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Graph 1: Number of stones vs. Run-Times (in seconds) for Game 1 

 
As the graph shows, the run time is very linear.  The average difference in run-times between 
any two points are 0.6652 over every 500,000 stones.  Based on this we should be able to predict 
the outcome of some other number of stones, say n=10,000,000, our prediction is 6.67840 + 
10*(0.6652) = 13.3304.  The actual run-time (experimental derived like other sample values by a 
3-line modification of the source code to specify n=10,000,000) is 13.44680, which produces a 
relative error of 0.0086563 (0.86%) which implies the linear form continues.  
 
5.3 Asymmetric Game 2 
 
The first example was run with m1 = m2 = 3, but what happens when the values vary and are 
greater.  Let SL = {2, 4, 5, 6, 7, 9, 12, 15, 18, 21, 23} and SR = {3, 4, 5, 6, 7, 9, 11, 13, 19}. 
 

Average run-time (out of 50) 
 n run time difference n run time difference 

500,000 3.74620 --- 3,000,000 24.33840 5.49566 
1,000,000 7.54400 3.7978 3,500,000 26.43280 2.0944 
1,500,000 11.57500 4.031 4,000,000 34.30060 7.8678 
2,000,000 15.34500 3.77 4,500,000 33.54440 -1.2438 
2,500,000 18.82740 3.4824 5,000,000 41.17520 7.6380 
Table 3: Run-times (seconds) and number of stones (n) for Game 2 
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Graph 2: Number of stones vs. Run-Times (in milliseconds) for Game 2 

 
Again, the graph shows a very linear run-time although a few interesting instances occur for the 
larger number of stones, but the graph is still overall very linear.  The overall average difference 
is 4.10.  If you were to compute the average distance of the first half (where the line visual looks 
perfectly linear), you get an average distance of 4.12.  If we were to use that distance and predict 
(just like above) the value at n=5,000,000 (prediction is 40.799888), we get a relative error of 
0.009115 (0.91%).  This suggests the little blips on the graph are strictly produced as part of the 
overall sampling error.  We use the overall average distance to accurately predict the run time at 
n=10,000,000 (predicted: 82.1752; actual: 82.42500), the result leaves a relative error of 0.00303 
(0.03%), again suggesting the run-time will remain linear. 
 
5.4 Comparison of the two example games 
 
To show the relationship between the two examples above, the following table was constructing 
computing the comparison of the average at each n for the examples.  For instance, in the table 
below, at n = 500,000, we take the run-time of game 2 at n = 500,000 and divide by the average 
run-time of game 1 at n = 500,000 to get a ratio of 5.41.  The ratio computed is the numerator 
portion of the divided difference between any two points.  
 

Ratio between Game 1 & 2 
 n ratio n ratio

500,000 5.41 3,000,000 6.01 
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Ratio between Game 1 & 2 
1,000,000 5.53 3,500,000 5.63 
1,500,000 5.69 4,000,000 6.29 
2,000,000 5.68 4,500,000 5.58 
2,500,000 5.58 5,000,000 6.16 

Table 4: Ratio between games (demonstrating constant increase) 
 

The ratio stays fairly constant around 5.756 (mean).  This suggests that the relationship between 
the two functions is only in the overall slope of the function, and will remain about the same as n 
increases.  Likewise, we should be able to determine the ratio between our predicted values at 
n=10,000,000 and the actual.  The ratio between our predicted values is 6.16 (7% error compared 
to average ratio), which is in the interval of the ratios computed from our samples.  The ratio for 
the actual run-times at n=10,000,000 is 6.12, again within our interval above and suggesting the 
ratio will continue and the graphs will remain linear as n increases. 
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Graph 3: Comparing the two games 

 
6 Additional Thoughts and Analysis 
 
6.1 The linearity claim 
 
Throughout this paper, the claim that the algorithms run in an almost linear time in practice has 
been based on the fact that m << n in most cases, where m = |S|.  What happens when m → n or 
m > n? 
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If m > n than there must be elements in S that are greater than n.  By the design of the algorithm, 
these elements are not used; they are ignored by line 20 of the algorithm in 4.2.  Therefore we 
look at if m = O(n), then some interesting things begin to happen.  First, m has a big affect on the 
asymptotic complexity of the algorithm, causing it to run in coordination with that of a third 
order polynomial.  However, as n and m increase, we predict the dynamic element of the 
algorithm will help the complexity and the algorithm will eventually ‘level off’ or more 
accurately, the derivative of the function will become constant, leaving a linear based algorithm.  
 
6.2 More experimental analysis 
 
A modified version of the application (appendix B.3) for the sampling in section 5 was used to 
conduct test with m = O(n) =  n/2 and the non-repeated random values of s∈S to be in the range 
from [0, n].  The sampling took the average of 50 executions resulting in some interesting 
results. 
 

n, mL & mR run-time ratio 
500 0.28540

1500 7.99760 28.02
2500 26.99145 3.37
3500 >320.000 ---
4500 --- --

 
Table 5: Run-times with m and n (demonstrating non-exponential increase) 

 
The above table demonstrates the run times encountered and the ratio between the previous and 
current run-times.  As the table demonstrates, the run-times appear to becoming exponentially 
worse.  In fact, it is computationally infeasible to populate the table further with the limited 
resources and time allocated for this research.  At n=3500, and therefore mL and mR = 1250, the 
program executed for over 4.5 hours and was still not complete.  This suggests an estimate of 
one-execution of the algorithm to be over 320 seconds.  Optimistically if the sampling at n=3500 
finished at 320 seconds, and the run-time became linear after that with a slope of 2 (we know it 
would be much worse), it could take upwards of a day to sample n=5500.  This is beyond the 
scope of this paper, and therefore no additional experimental analysis was conducted.  The 
extremely bad results do suggest the polynomial of order 3 (or exponential) growth as predicted.  
Given adequate time and computer resources (higher performance machine than I have 
available), in the course of a day or two, analysis of samples can be conducted and I predict it 
will show a ‘leveling off’ of the exponential looking graph to a linear-time as n increases. 
 
Appendix A – Selected Proofs 
 
A.1 Proof to Repeating Phenomena in Section 3.3 
 
Definition: A position n is safe if, whenever there are n stones remaining on the table, regardless 
of the previous move played, there is a winning strategy for the second player. 
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Theorem: Given the set of moves S = {1, 2, 3, 4, 5}, with s being an element of S, the safe 
positions will be [0]13 and [7]13, that is, 0mod13 and 7mod13. 
 
Proof: We start by finding the first few safe positions by constructing a matrix with |S| rows and 
(n+1) columns, labeled 0 to n and the rows labeled 1, 2, ..., 5.  The rows represent the previous 
move while the columns represent the current number of stones remaining.  A position is safe in 
this model if the entire column is populated with 2’s.  By default, the n=0 column is filled with 
all 2’s, since no moves exist for the first player.  At row 1, column 1, we can only move 2, 3, 4, 
or 5 stones since the previous move was a 1, so (1, 1) gets populated with a 2.  At row 2, column 
1 though, we can remove 1 stone to n=0, which would be a player 1 victory, so (2, 1) is a 1.  We 
continue for the remaining rows in column 1. 
 

 Stones remaining (n)
s∈S 0 1 2 
1 2 2 - 
2 2 1 - 
3 2 1 - 
4 2 1 - 
5 2 1 - 

 
We can continue populating the matrix up to n = 7.  At the first row of n = 7, we can only move 
to elements on the matrix that are currently filled with a 1 (shaded), therefore making (1, 7) a 2.  
Likewise with row 2, 3, 4, and 5 of column 7, therefore making 7 a safe position. 
 

 Stones Remaining (n) 
s∈S 0 1 2 3 4 5 6 7
1 2 2 1 1 1 1 1 2
2 2 1 1 1 1 1 1 2
3 2 1 1 2 1 1 2 2
4 2 1 1 1 2 1 1 2
5 2 1 1 1 1 2 1 2

 
We notice that the results of any given column, in the above case n=7, depends on the previous 5 
columns.  We can continue to populate the matrix, with 2 and 1’s indicating safe positions and 
non-safe positions, respectively, up to n=26. 
 

 Stones Remaining (n) 
s∈S 0 1 … 7 8 9 10 11 12 13 14 … 20 21 22 23 24 25 26 27
1 2 2 … 2 1 1 1 1 1 2 2 … 2 2 1 1 1 1 2 2 
2 2 1 … 2 1 1 1 1 1 2 1 … 2 1 1 1 1 1 2 1 
3 2 1 … 2 1 1 1 1 1 2 1 … 2 1 1 1 1 1 2 1 
4 2 1 … 2 1 1 1 2 1 2 1 … 2 1 1 1 2 1 2 1 
5 2 1 … 2 1 1 1 1 2 2 1 … 2 1 1 1 1 2 2 1 
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We’ve already shown that the determination of a given position to be safe or not depends on the 
previous 5 columns in the matrix.  In the above matrix we have found a repeat, columns 
n=9…13 and n=22…26, likewise it follows that n=27 matches n=14, and n=28 matches n=15, 
and so on.  From the pumping lemma |1| we know this pattern will continue to repeat as we 
expand the matrix. 
∴The winning positions will continue to occur in the pattern at [0]13 and [7]13. ■ 
 
Generalized: This proof can be generalized using more abstract techniques.  You are given a 
finite set of legal moves S, by the well-ordering principal there exists a maximum element in that 
set.  We know that the decision of whether a position n is safe or not is dependent upon the 
previous x positions, where x is that maximum element.  Since S is finite, there is only a finite 
possibility of permutations in our matrix, if we keep extending n we will eventually pass the 
number of permutations and there will have to be a repeating sequence, once we find this 
sequence we can quickly predict whether the next position is safe or not, and the position after 
and after and after, and so on.  This again is a specific case of the pumping lemma |1|.  The 
pattern of safe positions must repeat in all cases. ■ 
 
A.2 Proof of repeating in the asymmetric game 
 
Theorem: No matter which player goes first, if 10 or more stones are on the table, Lillian should 
win the game, given the set of moves, SL = {2, 5, 9} and SR = {3, 4, 8} for Lillian and Rekha 
respectively. 
 
Proof: Recall from A.2 that the pattern repeats in the symmetric game.  The asymmetric game is 
no different and the algorithm works the same except there are two matrices.  We must also 
factor in which player goes first in the game to correctly decide.  By constructing the matrices for 
the two players below in the two different games (based on who goes first) we find a repeat. 
 
Lillian going first 

AL Stones Remaining (n) 
SL 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
2 2 2 2 1 1 1 2 2 1 1 2 2 2 2 2 2 
5 2 2 2 - - 1 2 - - - - - - - - - 
9 - 2 - - - - - - - - - - - - - - 

 
AR Stones Remaining (n) 
SR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
8 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Rekha going first 
AL Stones Remaining (n) 
SL 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
2 2 2 2 1 1 1 2 2 1 1 2 2 2 2 2 2 
5 2 2 2 - - 1 2 2 - - 2 2 2 2 2 2 
9 2 2 2 - - - 2 2 - - 2 2 2 2 2 2 
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AR Stones Remaining (n) 
SR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
4 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
8 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
We populate the matrices following the asymmetric algorithm given in section 4.2.  In both 
games, Rekha’s matrix is primarily populated with 1’s, indicating non-safe positions.  In 
Lillian’s matrix when she goes first, we see a not-to-filled matrix, but what appears to be a row 
of 2’s forming.  This is because Lillian would win these games, but is the first player to go.  The 
matrix that gives the most information is Lillian’s matrix when Rekha goes first, it is populated 
with 2’s from n=10 and higher, it will in fact repeat based on the same principles and using the 
pumping lemma |1|.  Therefore Lillian will win the game is 10 or more stones are played, when 
using the given sets. ■ 
 
Appendix B – Selected Source Code 
 
B.1 Implementation of the Asymmetric Algorithm (4.2) 
 
Asym.h 
  1  #ifndef _ASYM_H_ 
  2  #define _ASYM_H_ 
  3  #include <stdio.h> 
  4  #include <stdlib.h> 
  5  typedef unsigned char uchar; 
  6  int Find_Safe_Positions(const int, const int*, const int, const int*, const int); 
  7  uchar Is_Safe_Aux(const int, uchar**, const int*, const int, uchar**, const int*, const int); 
  8  uchar Is_Safe(const int, uchar**, const int*, const int, uchar**, const int*, const int, const int); 
  9  #endif 
Asym.c 
  1  /* 
  2   * Thomas Fisher 
  3   * CMSC441 - Dr Tad White - Fall 03 
  4   * 
  5   * C-File with the asymetric algorithm in it. 
  6   * This is the implementation of the algorithm described 
  7   * in section 4.2 of the report. 
  8   *  
  9   */ 
 10 
 11  #include "asym.h" 
 12 
 13  int Find_Safe_Positions(const int n, const int Sl[], const int ml, const int Sr[], const int mr) 
 14  { 
 15     uchar **Al, **Ar; 
 16     uchar *x; 
 17     int i, j; 
 18 
 19     x = malloc((n+1)*sizeof(uchar) ); 
 20     if(x==NULL) 
 21     { 
 22        perror("No memory for x\n"); 
 23        return 22; 
 24     } 
 25     for(i=0; i<=n; i++) 
 26        x[i] = 0; 
 27     Al = (uchar**)malloc(ml*sizeof(int) ); 
 28     if(Al==NULL) 
 29     { 
 30        perror("Memory for Al error\n"); 
 31        return 432; 
 32     } 
 33     for(i=0; i<ml; i++) 
 34     { 
 35        Al[i] = (uchar*)malloc((n+1)*sizeof(uchar)); 
 36        if(Al[i]==NULL) 
 37        { 
 38           perror("Memory error for Al\n"); 
 39           return 23; 
 40        } 
 41     } 
 42     for(i=0; i<ml; i++) 
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 43        for(j=0; j<=n; j++) 
 44           Al[i][j] = 0; 
 45     Ar = (uchar**)malloc(mr*sizeof(int) ); 
 46     if(Ar==NULL) 
 47     { 
 48        perror("Memory Error for Ar\n"); 
 49        return 765; 
 50     } 
 51     for(i=0; i<mr; i++) 
 52     { 
 53        Ar[i] = (uchar*)malloc((n+1)*sizeof(uchar) ); 
 54        if(Ar[i] == NULL) 
 55        { 
 56           perror("Memory error for Ar\n"); 
 57           return 84; 
 58        } 
 59     } 
 60     for(i=0; i<mr; i++) 
 61        for(j=0; j<=n; j++) 
 62           Ar[i][j] = 0; 
 63     for(i=0; i<=n; i++) 
 64        x[i] = Is_Safe_Aux(i, Al, Sl, ml, Ar, Sr, mr); 
 65      
 66     if(n<36) 
 67     { 
 68        printf("\nIf Lillian goes first.\n"); 
 69        printf("----------------------\n"); 
 70        for(i=n; i>=0; i--) 
 71           printf("%3i",i); 
 72        printf("\n"); 
 73        for(i=0; i<=n; i++) 
 74           printf("---"); 
 75        printf("\n"); 
 76        for(i=n; i>=0; i--) 
 77           printf("%3i", x[i]); 
 78        printf("\n"); 
 79     } 
 80 
 81     /* Reset the memory to check the other way */ 
 82     for(i=0; i<ml; i++) 
 83        for(j=0; j<=n; j++) 
 84           Al[i][j] = 0x00; 
 85     for(i=0; i<mr; i++) 
 86        for(j=0; j<=n; j++) 
 87           Ar[i][j] = 0x00; 
 88 
 89     /* Do with Rekha going first! */ 
 90     for(i=0; i<=n; i++) 
 91        x[i] = Is_Safe_Aux(i, Ar, Sr, mr, Al, Sl, ml); 
 92     if(n<36) 
 93     { 
 94        printf("\nIf Rekha goes first.\n"); 
 95        printf("--------------------\n"); 
 96        for(i=n; i>=0; i--) 
 97           printf("%3i",i); 
 98        printf("\n"); 
 99        for(i=0; i<=n; i++) 
100           printf("---"); 
101        printf("\n"); 
102        for(i=n; i>=0; i--) 
103           printf("%3i", x[i]); 
104        printf("\n"); 
105     } 
106      
107     for(i=0; i<ml; i++) 
108        free(Al[i]); 
109     free(Al); 
110     for(i=0; i<mr; i++) 
111        free(Ar[i]); 
112     free(Ar); 
113     free(x); 
114 
115     return 0x00; 
116  } 
117 
118  uchar Is_Safe_Aux(const int n, uchar** A1, const int *S1, const int m1, uchar** A2, const int *S2, const int m2) 
119  { 
120     int i; 
121     uchar x; 
122 
123     for(i=0; i<m2; i++) 
124     { 
125        x=Is_Safe(n, A1, S1, m1, A2, S2, m2, i); 
126        if(x==1) 
127           return 1; 
128        else 
129           ; 
130     } 
131     return 2; 
132  } 
133 
134  uchar Is_Safe(const int n, uchar** A1, const int *S1, const int m1, 
135              uchar** A2, const int *S2, const int m2, const int move) 
136  { 
137     int i; 
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138     uchar x; 
139 
140     if(A2[move][n]!=0) 
141        return A2[move][n]; 
142     if(n==0) 
143     { 
144        A2[move][n] = 2; 
145        return 2; 
146     } 
147     for(i=0; i<m1; i++) 
148     { 
149        if((signed)(n-S1[i]) >= 0) 
150        { 
151           x = Is_Safe(n-S1[i], A2, S2, m2, A1, S1, m1, i); 
152           if(x==2) 
153           { 
154              A2[move][n] = 1; 
155              return 1; 
156           } 
157        } 
158     } 
159     A2[move][n] = 2; 
160     return 2; 
161  } 

 
B.2 Main Function for Statistical Testing (called in section 5) 
 
  1  /* 
  2   * A general program to simulate the asymmetric game. 
  3   * This meets requirement 7 of the project, and 
  4   * uses the algorithm in 4.2 of the project 
  5   *  
  6   * Thomas Fisher 
  7   * Dec. 03, 2003 
  8   * 
  9   * CMSC441.  Dr. Tad White. 
 10   * 
 11   */ 
 12 
 13  #include<stdlib.h> 
 14  #include<stdio.h> 
 15  #include<time.h> 
 16 
 17  #include "asym.h" 
 18 
 19  int main(void) 
 20  { 
 21     int n, ml, mr, i; 
 22     int *Sl, *Sr; 
 23     clock_t start, stop, avg; 
 24     double timed; 
 25 
 26     printf("What is the number of moves for Lillian?\n"); 
 27     scanf("%i", &ml); 
 28 
 29     Sl = (int*)malloc(ml*sizeof(int) ); 
 30     if(Sl == NULL) 
 31     { 
 32        perror("Memory error for Sl\n"); 
 33        return 99; 
 34     } 
 35     for(i=0; i<ml; i++) 
 36     { 
 37        printf("Enter Move %i: ", i+1); 
 38        scanf("%i", &Sl[i]); 
 39     } 
 40 
 41     printf("What is the number of moves for Rekha?\n"); 
 42     scanf("%i", &mr); 
 43 
 44     Sr = (int*)malloc(mr*sizeof(int) ); 
 45     if(Sr == NULL) 
 46     { 
 47        perror("Memory error for Sr\n"); 
 48        return 23; 
 49     } 
 50     for(i=0; i<mr; i++) 
 51     { 
 52        printf("Enter move %i: ", i+1); 
 53        scanf("%i", &Sr[i]); 
 54     } 
 55      
 56  /*   printf("What is the value of \'n\' in this simulation?\n"); 
 57     scanf("%i", &n);*/ 
 58  for(n=500000; n<=5000000; n+=500000) 
 59  { 
 60     n = 10000000; 
 61     start = clock(); 
 62     for(i=0; i<50; i++) 
 63        Find_Safe_Positions(n, Sl, ml, Sr, mr); 
 64     stop = clock(); 
 65     avg = (stop - start)/i; 
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 66     timed = (double)avg/(double)CLOCKS_PER_SEC; 
 67 
 68     printf("\nPerformed n=%d %i times with an average time of %0.5lf seconds.\n", n, i, timed); 
 69  } 
 70     free(Sr); 
 71     free(Sl); 
 72 
 73     return 0; 
 74  } 

 
B.3 Modified Version for Section 6 experimental analysis 
 
  1  /* 
  2   * This is a modified version of the part 7 of the project.  This creates the 
  3   * size of the Sets of legal moves to be O(n) or specifically n/2. 
  4   * Then a random set of values is put into each set. 
  5   * Timing analysis is done. 
  6   *  
  7   * Thomas Fisher 
  8   * Dec. 03, 2003 
  9   * 
 10   * CMSC441.  Dr. Tad White. 
 11   * 
 12   */ 
 13 
 14  #include<stdlib.h> 
 15  #include<stdio.h> 
 16  #include<time.h> 
 17 
 18  #include "asym.h" 
 19 
 20  int main(void) 
 21  { 
 22     int n, ml, mr, i, x; 
 23     int *Sl, *Sr, *tmp; 
 24     clock_t start, stop, avg; 
 25     double timed; 
 26 
 27     srand(time(NULL) ); 
 28      
 29  for(n=500; n<=10500; n+=1000) 
 30  { 
 31     ml = mr = n/2; 
 32     Sl = malloc(ml*sizeof(int) ); 
 33     if(Sl == NULL) 
 34        return 34; 
 35     Sr = malloc(mr*sizeof(int) ); 
 36     if(Sr == NULL) 
 37        return 28; 
 38     tmp = malloc((n+1)*sizeof(int) ); 
 39     if(tmp == NULL) 
 40        return 33; 
 41     for(i=0; i<=n; i++) 
 42        tmp[i] = 0; 
 43     i=0; 
 44     while(i<ml) 
 45     {            /* this is to prevent repeated moves */ 
 46        x = (int)rand()%n + 1; /* we don't want to have a move of 0 */ 
 47        if(!tmp[x]) 
 48        { 
 49           tmp[x] = 1; 
 50           Sl[i] = x; 
 51           i++; 
 52        } 
 53     } 
 54     for(i=0; i<=n; i++) 
 55        tmp[i] = 0; 
 56     i=0; 
 57     while(i<mr) 
 58     {            /* this is to prevent repeated moves */ 
 59        x = (int)rand()%n + 1; 
 60        if(!tmp[x]) 
 61        {   
 62           tmp[x] = 1; 
 63           Sr[i] = x; 
 64           i++; 
 65        } 
 66     } 
 67     printf("\nn = %d\nml = %d\nmr = %d\nAbout to start\n", n, ml, mr); 
 68     start = clock(); 
 69     for(i=0; i<50; i++) 
 70        Find_Safe_Positions(n, Sl, ml, Sr, mr); 
 71     stop = clock(); 
 72     avg = (stop - start)/i; 
 73     timed = (double)avg/(double)CLOCKS_PER_SEC; 
 74 
 75     printf("\nPerformed n=%d %i times with an average time of %0.5lf seconds.\n", n, i, timed); 
 76 
 77     free(tmp); 
 78     free(Sr); 
 79     free(Sl); 
 80  } 
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 81     return 0; 
 82  } 
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